
Risk Management Toolbox™

User’s Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Risk Management Toolbox™ User’s Guide
© COPYRIGHT 2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2016 Online only New for Version 1.0 (Release 2016b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started
1

Risk Management Toolbox Product Description 1-2
Key Features . 1-2

Risk Modeling with Risk Management Toolbox 1-3
Consumer Credit Risk . 1-3
Corporate Credit Risk . 1-3
Market Risk . 1-5

Market Risk Measurements Using VaR BackTesting
Tools

2
Overview of VaR Backtesting . 2-2

Binomial Test . 2-3
Traffic Light Test . 2-3
Kupiec’s POF and TUFF Tests . 2-4
Christoffersen’s Interval Forecast Tests 2-5
Haas’s Time Between Failures or Mixed Kupiec’s Test 2-6

VaR Backtesting Workflow . 2-8

Value-at-Risk Estimation and Backtesting 2-13

iii

Managing Consumer Credit Risk Using the Binning
Explorer for Credit Scorecards

3
Overview of Binning Explorer . 3-2

Common Binning Explorer Tasks . 3-4
Import Data . 3-4
Change Predictor Type . 3-5
Change Binning Algorithm for One or More Predictors 3-6
Change Algorithm Options for Binning Algorithms 3-7
Split Bins for a Numeric Predictor 3-11
Split Bins for a Categorical Predictor 3-12
Manual Binning to Merge Bins for a Numeric or Categorical

Predictor . 3-14
Change Bin Boundaries for a Single Predictor 3-16
Change Bin Boundaries for Multiple Predictors 3-17
Set Options for Display . 3-19
Export and Save the Binning . 3-20
Troubleshoot the Binning . 3-20

Binning Explorer Case Study Example 3-26

Stress Testing of Consumer Credit Default Probabilities
Using Panel Data . 3-44

Corporate Credit Risk Simulations for Portfolios
4

Credit Simulation Using Copulas . 4-2
Factor Models . 4-3
Supported Simulations . 4-3

creditCopula Simulation Workflow . 4-5

Modeling Correlated Defaults with Copulas 4-11

iv Contents

Functions — Alphabetical List
5

v

1

Getting Started

• “Risk Management Toolbox Product Description” on page 1-2
• “Risk Modeling with Risk Management Toolbox” on page 1-3

1 Getting Started

Risk Management Toolbox Product Description
Develop risk models and perform risk simulation

Risk Management Toolbox provides functions for mathematical modeling and simulation
of credit and market risk. You can model probabilities of default, create credit scorecards,
perform credit portfolio analysis, and backtest models to assess potential for financial
loss. The toolbox lets you assess corporate and consumer credit risk as well as market
risk. It includes an app for automatic and manual binning of variables for credit
scorecards. It also includes simulation tools to analyze credit portfolio risk and
backtesting tools to evaluate Value-at-Risk (VaR).

Key Features

• Binning explorer app for developing credit scorecards
• Copula-based simulation tools for portfolios of credit instruments
• Value-at-Risk (VaR) backtesting models for assessing market risk

1-2

 Risk Modeling with Risk Management Toolbox

Risk Modeling with Risk Management Toolbox

In this section...

“Consumer Credit Risk” on page 1-3
“Corporate Credit Risk” on page 1-3
“Market Risk” on page 1-5

Risk Management Toolbox provides tools for modeling three areas of risk assessment:

• Consumer credit risk
• Corporate credit risk
• Market risk

Consumer Credit Risk

Consumer credit risk (also referred to as retail credit risk) is the risk of loss due to a
customer's default (non-repayment) on a consumer credit product. These products can
include a mortgage, unsecured personal loan, credit card, or overdraft. A common method
for predicting credit risk is through a credit scorecard. The scorecard is a statistically
based model for attributing a score to a customer that indicates the predicted probability
that the customer will default. The data used to calculate the score can be from sources
such as application forms, credit reference agencies, or products the customer already
holds with the lender. Financial Toolbox™ provides tools for creating credit scorecards
and performing credit portfolio analysis using scorecards. Risk Management Toolbox
includes a Binning Explorer app for automatic or manual binning to streamline the
binning phase of credit scorecard development. For more information, see “Overview of
Binning Explorer” on page 3-2.

Corporate Credit Risk

Corporate credit risk (also referred to as wholesale credit risk) is the risk that
counterparties default on their financial obligations. To assess this risk, the main
question to ask is, Given a current credit portfolio, how much can be lost in a given time
period due to defaults? In differing circumstances, the answer to this question might
mean:

• How much do you expect to lose?
• How likely is it that you will lose more than a specific amount?

1-3

1 Getting Started

• What is the most you can lose under relatively normal circumstances?
• How much can you lose if things get bad?

Mathematically, these questions all depend on estimating a distribution of losses for the
credit portfolio: What are the different amounts you can lose, and how likely is it that you
lose each individual amount.

Corporate credit risk is fundamentally different from market risk, which is the risk
that assets lose value due to market movements. The most important difference is that
markets move all the time, but defaults occur infrequently. Therefore, the sample sizes
to support any modeling efforts are different. The challenge is to calibrate a distribution
of credit losses, because the sample sizes are small. For credit risk, even for an individual
bond that has not defaulted, you cannot collect direct data on what happens in the event
of default because it has not defaulted. And once the issuer actually defaults, unless you
can pool default information from similar companies, that is the only data point that you
have.

For corporate credit portfolio analysis, estimating credit correlations so that you can
understand the benefits of diversification is also challenging. Two companies can only
default in the same time window once, so you cannot collect data on how often they
default together. To collect more data, you can pool data from similar companies and
under somewhat similar economic conditions.

Risk Management Toolbox provides a simulation framework for credit portfolios, where
the three main elements of credit risk for a single instrument are:

• The probability of default (PD) which is the likelihood that the issuer defaults in a
given time period.

• The exposure at default (EAD) which is the amount of money that is at stake. For a
traditional bond, this is the bond principal.

• The loss given default (LGD) which is the fraction of the exposure that would be lost
at default. When default occurs, usually some money is recovered eventually.

The assumption is that these three quantities are fixed and known for all the companies
in the credit portfolio. With this assumption, the only uncertainty is whether each
company defaults, which happens with probability PDi.

At the credit portfolio level, however, the main question is, What are the default
correlations between issuers? For example, for two bonds with 10MM principal each,
the risk is different if you expect the companies to default together. In this scenario,
you could lose 20MM minus the recovery, all at once. Alternatively, if the defaults

1-4

 Risk Modeling with Risk Management Toolbox

are independent, you could lose 10MM minus recovery if one defaults, but the other
company is likely still alive. Default correlations are therefore important parameters
for understanding the risk at a portfolio level. These parameters are also important for
understanding the diversification and concentration characteristics of the portfolio. The
approach in Risk Management Toolbox is to simulate correlated variables that can be
efficiently simulated and parameterized, then map the simulated values to default or
nondefault states to preserve the individual default probabilities. This approach is called
a copula. When normal variables are used, this approach is called a Gaussian copula. For
more information, see “Credit Simulation Using Copulas” on page 4-2.

Market Risk

Market risk is the risk of losses in positions arising from movements in market prices.
Value-at-risk is a statistical method that quantifies the risk level associated with a
portfolio. VaR measures the maximum amount of loss over a specified time horizon, at
a given confidence level. For example, if the 1-day 95% VaR of a portfolio is 10MM, then
there is a 95% chance that the portfolio loses less than 10MM the following day. In other
words, only 5% of the time (or about once in 20 days) the portfolio losses exceed 10MM.

Backtesting, on the other hand, measures how accurate the VaR calculations are. For
many portfolios, especially trading portfolios, VaR is computed daily. At the closing of
the following day, the actual profits and losses for the portfolio are known, and can be
compared to the VaR estimated the day before. You can use this daily data to assess the
performance of VaR models, which is the goal of VaR backtesting. As such, backtesting
is a method that looks retrospectively at data and refines the VaR models. Many VaR
backtesting methodologies have been proposed. As a best practice, use more than one
criterion to backtest the performance of VaR models, because all tests have strengths and
weaknesses.

Risk Management Toolbox provides the following VaR backtesting individual tests:

• Traffic light test (tl)
• Binomial test (bin)
• Kupiec’s tests (pof, tuff)
• Christoffersen’s tests (cc, cci)
• Haas’s tests (tbf, tbfi)

For information on the different tests, see “Overview of VaR Backtesting” on page
2-2.

1-5

1 Getting Started

See Also
bin | cc | cci | confidenceBands | creditCopula | pof | portfolioRisk |
riskContribution | runtests | simulate | summary | tbf | tbfi | tl | tuff |
varbacktest

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Binning Explorer Case Study Example” on page 3-26
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-44
• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11
• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)

1-6

http://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-120558.html

2

Market Risk Measurements Using VaR
BackTesting Tools

• “Overview of VaR Backtesting” on page 2-2
• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

2 Market Risk Measurements Using VaR BackTesting Tools

Overview of VaR Backtesting

In this section...

“Binomial Test” on page 2-3
“Traffic Light Test” on page 2-3
“Kupiec’s POF and TUFF Tests” on page 2-4
“Christoffersen’s Interval Forecast Tests” on page 2-5
“Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6

Market risk is the risk of losses in positions arising from movements in market prices.
Value-at-risk (VaR) is one of the main measures of financial risk. VaR is an estimate of
how much value a portfolio can lose in a given time period with a given confidence level.
For example, if the 1-day 95% VaR of a portfolio is 10MM, then there is a 95% chance
that the portfolio loses less than 10MM the following day. In other words, only 5% of the
time (or about once in 20 days) the portfolio losses exceed 10MM.

For many portfolios, especially trading portfolios, VaR is computed daily. At the closing
of the following day, the actual profits and losses for the portfolio are known and can be
compared to the VaR estimated the day before. You can use this daily data to assess the
performance of VaR models, which is the goal of VaR backtesting. The performance of
VaR models can be measured in different ways. In practice, many different metrics and
statistical tests are used to identify VaR models that are performing poorly or performing
better. As a best practice, use more than one criterion to backtest the performance of VaR
models, because all tests have strengths and weaknesses.

Suppose that you have VaR limits and corresponding returns or profits and losses for
days t = 1,…,N. Use VaRt to denote the VaR estimate for day t (determined on day t
− 1). Use Rt to denote the actual return or profit and loss observed on day t. Profits
and losses are expressed in monetary units and represent value changes in a portfolio.
The corresponding VaR limits are also given in monetary units. Returns represent the
change in portfolio value as a proportion (or percentage) of its value on the previous day.
The corresponding VaR limits are also given as a proportion (or percentage). The VaR
limits must be produced from existing VaR models. Then, to perform a VaR backtesting
analysis, provide these limits and their corresponding returns as data inputs to the VaR
backtesting tools in Risk Management Toolbox.

The toolbox supports these VaR backtests:

• Binomial test

2-2

 Overview of VaR Backtesting

• Traffic light test
• Kupiec’s tests
• Christoffersen’s tests
• Haas’s tests

Binomial Test

The most straightforward test is to compare the observed number of exceptions, x, to
the expected number of exceptions. From the properties of a binomial distribution,
you can build a confidence interval for the expected number of exceptions. Using exact
probabilities from the binomial distribution or a normal approximation, the bin function
uses a normal approximation. By computing the probability of observing x exceptions,
you can compute the probability of wrongly rejecting a good model when x exceptions
occur. This is the p-value for the observed number of exceptions x. For a given test
confidence level, a straightforward accept-or-reject result in this case is to fail the VaR
model whenever x is outside the test confidence interval for the expected number of
exceptions. “Outside the confidence interval” can mean too many exceptions, or too few
exceptions. Too few exceptions might be a sign that the VaR model is too conservative.

The test statistic is

Z
x Np

Np p
bin =

-

-()1

where x is the number of failures, N is the number of observations, and p = 1 – VaR level.
The binomial test is approximately distributed as a standard normal distribution.

For more information, see Bibliography for Jorion and bin.

Traffic Light Test

A variation on the binomial test proposed by the Basel Committee is the traffic light test
or three zones test. For a given number of exceptions x, you can compute the probability
of observing up to x exceptions. That is, any number of exceptions from 0 to x, or the
cumulative probability up to x. The probability is computed using a binomial distribution.
The three zones are defined as follows:

2-3

2 Market Risk Measurements Using VaR BackTesting Tools

• The “red” zone starts at the number of exceptions where this probability equals or
exceeds 99.99%. It is unlikely that too many exceptions will come from a correct VaR
model.

• The “yellow” zone covers the number of exceptions where the probability equals
or exceeds 95% but is smaller than 99.99%. Even though there high number of
violations, the violation count is not exceedingly high.

• Everything below the yellow zone is "green." If you have too few failures, they fall in
the green zone. Only too many failures lead to model rejections.

For more information, see Bibliography for Basel Committee on Banking Supervision and
tl.

Kupiec’s POF and TUFF Tests

Kupiec (1995) introduced a variation on the binomial test called the proportion of failures
(POF) test. The POF test works with the binomial distribution approach. In addition,
it uses a likelihood ratio to test whether the probability of exceptions is synchronized
with the probability p implied by the VaR confidence level. If the data suggests that the
probability of exceptions is different than p, the VaR model is rejected. The POF test
statistic is

LR
p p

x

N

x

N

POF

N x x

N x x
= -

-()

-Ê
Ë
Á

ˆ
¯
˜

Ê
Ë
Á

ˆ
¯
˜

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

-

-
2

1

1

log

where x is the number of failures, N the number of observations and p = 1 – VaR level.

This statistic is asymptotically distributed as a chi square variable with one degree of
freedom. The VaR model fails the test if this likelihood ratio exceeds a critical value. The
critical value depends on the test confidence level.

Kupiec also proposed a second test called the time until first failure (TUFF). The TUFF
test looks at when the first rejection occurred. If it happens too soon, the test fails the
VaR model. Checking only the first exception leaves much information out, specifically,
whatever happened after the first exception is ignored. The TBFI test extends the TUFF
approach to include all the failures. See tbfi.

2-4

 Overview of VaR Backtesting

The TUFF test is also based on a likelihood ratio, but the underlying distribution is
a geometric distribution. If n is the number of days until the first rejection, the test
statistic is given by

LR
p p

n n

TUFF

n

n
= -

-()
Ê
Ë
Á

ˆ
¯
˜ -Ê
Ë
Á

ˆ
¯
˜

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

-

-
2

1

1
1

1

1

1
log

This statistic is asymptotically distributed as a chi square variable with one degree of
freedom. For more information, see Bibliography for Kupiec, pof, and tuff.

Christoffersen’s Interval Forecast Tests

Christoffersen (1998) proposed a test to measure whether the probability of observing
an exception on a particular day depends on whether an exception occurred. Unlike
the unconditional probability of observing an exception, Christoffersen's test measures
the dependency between consecutive days only. The test statistic for independence in
Christoffersen’s interval forecast (IF) approach is given by

LRCCI

n n n n

n n n n
= -

-()
-() -()

+ +
2

1

1 1

00 10 01 11

0
00

0
01

1
10

1
1

log
p p

p p p p 11

Ê

Ë

Á
Á

ˆ

¯

˜
˜

where

• n00 = Number of periods with no failures followed by a period with no failures.
• n10 = Number of periods with failures followed by a period with no failures.
• n01 = Number of periods with no failures followed by a period with failures.
• n11 = Number of periods with failures followed by a period with failures.

and

• π0 — Probability of having a failure on period t, given that no failure occurred on
period t − 1 = n01 / (n00 + n01)

• π1 — Probability of having a failure on period t, given that a failure occurred on period
t − 1 = n11 / (n10 + n11)

• π — Probability of having a failure on period t = (n01 + n11 / (n00 + n01 + n10 + n11)

2-5

2 Market Risk Measurements Using VaR BackTesting Tools

This statistic is asymptotically distributed as a chi square with one degree of freedom.
You can combine this statistic with the frequency POF test to get a conditional coverage
(CC) mixed test:

LRCC = LRPOF + LRCCI

This test is asymptotically distributed as a chi square variable with two degrees of
freedom.

For more information, see Bibliography for Christoffersen, cc, and cci.

Haas’s Time Between Failures or Mixed Kupiec’s Test

Haas (2001) extended Kupiec’s TUFF test to incorporate the time information between
all the exceptions in the sample. Haas’s test applies the TUFF test to each exception in
the sample and aggregates the time between failures (TBF) test statistic.

LR
p p

n n

TBFI i

x
n

i i

n

i

i

= -
-()

Ê

Ë
Á

ˆ

¯
˜ -
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á
Á
Á
Á

=

-

-Â2
1

1
1

1
1

1

1
log

ˆ̂

¯

˜
˜
˜
˜
˜

In this statistic, p = 1 – VaR level and ni is the number of days between failures i-1 and i
(or until the first exception for i = 1). This statistic is asymptotically distributed as a chi
square variable with x degrees of freedom, where x is the number of failures.

Like Christoffersen’s test, you can combine this test with the frequency POF test to get a
TBF mixed test, sometimes called Haas’ mixed Kupiec’s test:

LR LR LRTBF POF TBFI= +

This test is asymptotically distributed as a chi square variable with x+1 degrees of
freedom. For more information, see Bibliography for Haas, tbf, and tbfi.

References

Basel Committee on Banking Supervision, Supervisory framework for the use of
“backtesting” in conjunction with the internal models approach to market risk capital
requirements. January 1996, http://www.bis.org/publ/bcbs22.htm.

2-6

http://www.bis.org/publ/bcbs22.htm

 Overview of VaR Backtesting

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

Cogneau, P. “Backtesting Value-at-Risk: how good is the model?" Intelligent Risk,
PRMIA, July, 2015.

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

Jorion, P. Financial Risk Manager Handbook. 6th Edition, Wiley Finance, 2011.

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton
University Press, 2005.

Nieppola, O. “Backtesting Value-at-Risk Models.” Master's Thesis, Helsinki School of
Economics, 2009.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff |
varbacktest

Related Examples
• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

2-7

2 Market Risk Measurements Using VaR BackTesting Tools

VaR Backtesting Workflow

This example shows a value-at-risk (VaR) backtesting workflow and the use of VaR
backtesting tools. For a more comprehensive example of VaR backtesting, see “Value-at-
Risk Estimation and Backtesting”.

Step 1. Load the VaR backtesting data.

Use the VaRBacktestData.mat file to load the VaR data into the workspace. This
example works with the EquityIndex, Normal95, and Normal99 numeric arrays. These
arrays are equity returns and the corresponding VaR data at 95% and 99% confidence
levels is produced with a normal distribution (a variance-covariance approach). See
“Value-at-Risk Estimation and Backtesting” for an example on how to generate this VaR
data.

load('VaRBacktestData')

disp([EquityIndex(1:5) Normal95(1:5) Normal99(1:5)])

 -0.0043 0.0196 0.0277

 -0.0036 0.0195 0.0276

 -0.0000 0.0195 0.0275

 0.0298 0.0194 0.0275

 0.0023 0.0197 0.0278

The first column shows three losses in the first three days, but none of these losses
exceeds the corresponding VaR (columns 2 and 3). The VaR model fails whenever the loss
(negative of returns) exceeds the VaR.

Step 2. Generate a VaR backtesting plot.

Use the plot function to visualize the VaR backtesting data. This type of visualization is
a common first step when performing a VaR backtesting analysis.

plot(Date,[EquityIndex -Normal95 -Normal99])

title('VaR Backtesting')

xlabel('Date')

ylabel('Returns')

legend('Returns','VaR 95%','VaR 99%')

2-8

 VaR Backtesting Workflow

Step 3. Create a varbacktest object.

Create a varbacktest object for the equity returns and the VaRs at 95% and 99%
confidence levels.

vbt = varbacktest(EquityIndex,[Normal95 Normal99],...

 'PortfolioID','S&P', ...

 'VaRID',{'Normal95' 'Normal99'}, ...

 'VaRLevel',[0.95 0.99]);

disp(vbt)

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×2 double]

2-9

2 Market Risk Measurements Using VaR BackTesting Tools

 PortfolioID: "S&P"

 VaRID: ["Normal95" "Normal99"]

 VaRLevel: [0.9500 0.9900]

Step 4. Run a summary report.

Use the summary function to obtain a summary for the number of observations, the
number of failures, and other simple metrics.

summary(vbt)

ans =

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing

 ___________ __________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "S&P" "Normal95" 0.95 0.94535 1043 57 52.15 1.093 58 0

 "S&P" "Normal99" 0.99 0.9837 1043 17 10.43 1.6299 173 0

Step 5. Run all tests.

Use the runtests function to display the final test results all at once.

runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ __________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal95" 0.95 green accept accept accept accept accept reject reject

 "S&P" "Normal99" 0.99 yellow reject accept accept accept accept accept accept

Step 6. Run individual tests.

After running all tests, you can investigate the details of particular tests. For example,
use the tl function to run the traffic light test.

tl(vbt)

2-10

 VaR Backtesting Workflow

ans =

 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures

 ___________ __________ ________ ______ ___________ _______ ________ ____________ ________

 "S&P" "Normal95" 0.95 green 0.77913 0.26396 0 1043 57

 "S&P" "Normal99" 0.99 yellow 0.97991 0.03686 0.26582 1043 17

Step 7. Create VaR backtests for multiple portfolios.

You can create VaR backtests for different portfolios, or the same portfolio over different
time windows. Run tests over two different subwindows of the original test window.

Ind1 = year(Date)<=2000;

Ind2 = year(Date)>2000;

vbt1 = varbacktest(EquityIndex(Ind1),[Normal95(Ind1,:) Normal99(Ind1,:)],...

 'PortfolioID','S&P, 1999-2000',...

 'VaRID',{'Normal95' 'Normal99'},...

 'VaRLevel',[0.95 0.99]);

vbt2 = varbacktest(EquityIndex(Ind2),[Normal95(Ind2,:) Normal99(Ind2,:)],...

 'PortfolioID','S&P, 2001-2002',...

 'VaRID',{'Normal95' 'Normal99'},...

 'VaRLevel',[0.95 0.99]);

Step 8. Display a summary report for both portfolios.

Use the summary function to display a summary for both portfolios.

Summary = [summary(vbt1); summary(vbt2)];

disp(Summary)

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing

 ________________ __________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "S&P, 1999-2000" "Normal95" 0.95 0.94626 521 28 26.05 1.0749 58 0

 "S&P, 1999-2000" "Normal99" 0.99 0.98464 521 8 5.21 1.5355 173 0

 "S&P, 2001-2002" "Normal95" 0.95 0.94444 522 29 26.1 1.1111 35 0

 "S&P, 2001-2002" "Normal99" 0.99 0.98276 522 9 5.22 1.7241 45 0

Step 9. Run all tests for both portfolios.

Use the runtests function to display the final test result for both portfolios.

2-11

2 Market Risk Measurements Using VaR BackTesting Tools

Results = [runtests(vbt1);runtests(vbt2)];

disp(Results)

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ________________ __________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P, 1999-2000" "Normal95" 0.95 green accept accept accept accept accept reject reject

 "S&P, 1999-2000" "Normal99" 0.99 green accept accept accept accept accept accept accept

 "S&P, 2001-2002" "Normal95" 0.95 green accept accept accept accept accept accept accept

 "S&P, 2001-2002" "Normal99" 0.99 yellow accept accept accept accept accept accept accept

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff |
varbacktest

Related Examples
• “Overview of VaR Backtesting” on page 2-2
• “Value-at-Risk Estimation and Backtesting” on page 2-13

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6

2-12

 Value-at-Risk Estimation and Backtesting

Value-at-Risk Estimation and Backtesting

This example shows how to estimate the value-at-risk (VaR) using three methods, and
how to perform a VaR backtesting analysis. The three methods are:

1 Normal distribution
2 Historical simulation
3 Exponential weighted moving average (EWMA)

Value-at-risk is a statistical method that quantifies the risk level associated with a
portfolio. The VaR measures the maximum amount of loss over a specified time horizon
and at a given confidence level.

Backtesting measures the accuracy the VaR calculations. Using VaR methods, the loss
forecast is calculated and then compared to the actual losses at the end of the next day.
The degree of difference between the predicted and actual losses indicates whether the
VaR model is underestimating or overestimating the risk. As such, backtesting looks
retrospectively at data and helps to assess the VaR model.

The three estimation methods used in this example estimate the VaR at 95% and 99%
confidence levels.

Load the Data and Define the Test Window

Load the data. The data used in this example is from a time series of returns on the S&P
index between 1993 and 2003.

load VaRExampleData.mat

Returns = diff(sp)./sp(1:end-1);

DateReturns = dates(2:end);

SampleSize = length(Returns);

Define the estimation window as 250 trading days. The test window starts on the first
day in 1996 and runs through the end of the sample.

TestWindowStart = find(year(DateReturns)==1996,1);

TestWindow = TestWindowStart : SampleSize;

EstimationWindowSize = 250;

For a VaR confidence level of 95% and 99%, set the complement of the VaR level.

pVaR = [0.05 0.01];

2-13

2 Market Risk Measurements Using VaR BackTesting Tools

These values mean that there is at most a 5% and 1% probability, respectively, that
the loss incurred will be greater than the maximum threshold (that is, greater than the
VaR).

Compute the VaR Using the Normal Distribution Method

For the normal distribution method, assume that the profit and loss of the portfolio is
normally distributed. Using this assumption, compute the VaR by multiplying the z-
score, at each confidence level by the standard deviation of the returns. Because VaR
backtesting looks retrospectively at data, the VaR "today" is computed based on values of
the returns in the last N = 250 days leading to, but not including, "today."

Zscore = norminv(pVaR);

Normal95 = zeros(length(TestWindow),1);

Normal99 = zeros(length(TestWindow),1);

for t = TestWindow

 i = t - TestWindowStart + 1;

 EstimationWindow = t-EstimationWindowSize:t-1;

 Sigma = std(Returns(EstimationWindow));

 Normal95(i) = -Zscore(1)*Sigma;

 Normal99(i) = -Zscore(2)*Sigma;

end

figure;

plot(DateReturns(TestWindow),[Normal95 Normal99])

xlabel('Date')

ylabel('VaR')

legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')

title('VaR Estimation Using the Normal Distribution Method')

2-14

 Value-at-Risk Estimation and Backtesting

The normal distribution method is also known as parametric VaR because its estimation
involves computing a parameter for the standard deviation of the returns. The advantage
of the normal distribution method is its simplicity. However, the weakness of the normal
distribution method is the assumption that returns are normally distributed. Another
name for the normal distribution method is the variance-covariance approach.

Compute the VaR Using the Historical Simulation Method

Unlike the normal distribution method, the historical simulation (HS) is a nonparametric
method. It does not assume a particular distribution of the asset returns. Historical
simulation forecasts risk by assuming that past profits and losses can be used as the
distribution of profits and losses for the next period of returns. The VaR "today" is
computed as the p th-quantile of the last N returns prior to "today."

2-15

2 Market Risk Measurements Using VaR BackTesting Tools

Historical95 = zeros(length(TestWindow),1);

Historical99 = zeros(length(TestWindow),1);

for t = TestWindow

 i = t - TestWindowStart + 1;

 EstimationWindow = t-EstimationWindowSize:t-1;

 X = Returns(EstimationWindow);

 Historical95(i) = -quantile(X,pVaR(1));

 Historical99(i) = -quantile(X,pVaR(2));

end

figure;

plot(DateReturns(TestWindow),[Historical95 Historical99])

ylabel('VaR')

xlabel('Date')

legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')

title('VaR Estimation Using the Historical Simulation Method')

2-16

 Value-at-Risk Estimation and Backtesting

The preceding figure shows that the historical simulation curve has a piecewise constant
profile. The reason for this is that quantiles do not change for several days until extreme
events occur. Thus, the historical simulation method is slow to react to changes in
volatility.

Compute the VaR Using the Exponential Weighted Moving Average Method (EWMA)

The first two VaR methods assume that all past returns carry the same weight. The
exponential weighted moving average (EWMA) method assigns nonequal weights,
particularly exponentially decreasing weights. The most recent returns have higher
weights because they influence "today's" return more heavily than returns further in the
past. The formula for the EWMA variance over an estimation window of size is:

2-17

2 Market Risk Measurements Using VaR BackTesting Tools

where is a normalizing constant:

For convenience, we assume an infinitely large estimation window to approximate the
variance:

A value of the decay factor frequently used in practice is 0.94. This is the value used in
this example. For more information, see References.

Initiate the EWMA using a warm-up phase to set up the standard deviation.

Lambda = 0.94;

Sigma2 = zeros(length(Returns),1);

Sigma2(1) = Returns(1)^2;

for i = 2 : (TestWindowStart-1)

 Sigma2(i) = (1-Lambda) * Returns(i-1)^2 + Lambda * Sigma2(i-1);

end

Use the EWMA in the test window to estimate the VaR.

Zscore = norminv(pVaR);

EWMA95 = zeros(length(TestWindow),1);

EWMA99 = zeros(length(TestWindow),1);

for t = TestWindow

 k = t - TestWindowStart + 1;

 Sigma2(t) = (1-Lambda) * Returns(t-1)^2 + Lambda * Sigma2(t-1);

 Sigma = sqrt(Sigma2(t));

 EWMA95(k) = -Zscore(1)*Sigma;

 EWMA99(k) = -Zscore(2)*Sigma;

end

2-18

 Value-at-Risk Estimation and Backtesting

figure;

plot(DateReturns(TestWindow),[EWMA95 EWMA99])

ylabel('VaR')

xlabel('Date')

legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')

title('VaR Estimation Using the EWMA Method')

In the preceding figure, the EWMA reacts very quickly to periods of large (or small)
returns.

VaR Backtesting

In the first part of this example, VaR was estimated over the test window with
three different methods and at two different VaR confidence levels. The goal of VaR

2-19

2 Market Risk Measurements Using VaR BackTesting Tools

backtesting is to evaluate the performance of VaR models. A VaR estimate at 95%
confidence is violated only about 5% of the time, and VaR failures do not cluster.
Clustering of VaR failures indicates the lack of independence across time because the
VaR models are slow to react to changing market conditions.

A common first step in VaR backtesting analysis is to plot the returns and the VaR
estimates together. Plot all three methods at the 95% confidence level and compare them
to the returns.

ReturnsTest = Returns(TestWindow);

DatesTest = DateReturns(TestWindow);

figure;

plot(DatesTest,[ReturnsTest -Normal95 -Historical95 -EWMA95])

ylabel('VaR')

xlabel('Date')

legend({'Returns','Normal','Historical','EWMA'},'Location','Best')

title('Comparison of returns and VaR at 95% for different models')

2-20

 Value-at-Risk Estimation and Backtesting

To highlight how the different approaches react differently to changing market
conditions, you can zoom in on the time series where there is a large and sudden change
in the value of returns. For example, around August 1998:

ZoomInd = (DatesTest >= '5-Aug-1998') & (DatesTest <= '31-Oct-1998');

VaRData = [-Normal95(ZoomInd) -Historical95(ZoomInd) -EWMA95(ZoomInd)];

VaRFormat = {'-','--','-.'};

figure;

bar(datenum(DatesTest(ZoomInd)),ReturnsTest(ZoomInd),'FaceColor',[0.6 0.6 0.6]);

hold on

for i = 1 : size(VaRData,2)

 stairs(datenum(DatesTest(ZoomInd))-0.5,VaRData(:,i),VaRFormat{i});

end

ylabel('VaR')

2-21

2 Market Risk Measurements Using VaR BackTesting Tools

xlabel('Date')

legend({'Returns','Normal','Historical','EWMA'},'Location','Best','AutoUpdate','Off')

title('95% VaR violations for different models')

datetick('x','keeplimits');

A VaR failure or violation happens when the returns have a negative VaR. A closer look
around August 27th to August 31st shows a significant dip in the returns. On the dates
starting from August 27th onward, the EWMA follows the trend of the returns closely
and more accurately. Consequently, EWMA has fewer VaR violations (two) compared to
the normal distribution approach (seven violations) or the historical simulation method
(eight violations).

Besides visual tools, you can use statistical tests for VaR backtesting. In Risk
Management Toolbox™, a varbacktest object supports multiple statistical tests for

2-22

 Value-at-Risk Estimation and Backtesting

VaR backtesting analysis. In this example, start by comparing the different test results
for the normal distribution approach at the 95% and 99% VaR levels.

vbt = varbacktest(ReturnsTest,[Normal95 Normal99],'PortfolioID','S&P','VaRID',...

 {'Normal95','Normal99'},'VaRLevel',[0.95 0.99]);

summary(vbt)

ans =

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing

 ___________ __________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "S&P" "Normal95" 0.95 0.94863 1966 101 98.3 1.0275 7 0

 "S&P" "Normal99" 0.99 0.98372 1966 32 19.66 1.6277 7 0

The summary report shows that the observed level is close enough to the defined VaR
level. The 95% and 99% VaR levels have at most (1-VaR_level) x N expected failures,
where N is the number of observations. The failure ratio shows that the Normal95 VaR
level is within range, whereas the Normal99 VaR Level is imprecise and under-forecasts
the risk. To run all tests supported in varbacktest, use runtests.

runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ __________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal95" 0.95 green accept accept accept accept reject reject reject

 "S&P" "Normal99" 0.99 yellow reject reject accept reject accept reject reject

The 95% VaR passes the frequency tests, such as traffic light, binomial and proportion of
failures tests (TL, Bin, and POF columns. The 99% VaR does not pass these same tests,
as indicated by the yellow and reject results. Both confidence levels got rejected in
the conditional coverage independence, and time between failures independence (CCI
and TBFI columns. This result suggests that the VaR violations are not independent,
and there are probably periods with multiple failures in a short span. Also, one failure
may make it more likely that other failures will follow in subsequent days. For more
information on the tests methodologies and the interpretation of results, see varbacktest
and the individual tests.

2-23

2 Market Risk Measurements Using VaR BackTesting Tools

Using a varbacktest object, run the same tests on the portfolio for the three
approaches at both VaR confidence levels.

vbt = varbacktest(ReturnsTest,[Normal95 Historical95 EWMA95 Normal99 Historical99 ...

 EWMA99],'PortfolioID','S&P','VaRID',{'Normal95','Historical95','EWMA95',...

 'Normal99','Historical99','EWMA99'},'VaRLevel',[0.95 0.95 0.95 0.99 0.99 0.99]);

runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ ______________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal95" 0.95 green accept accept accept accept reject reject reject

 "S&P" "Historical95" 0.95 yellow accept accept accept accept accept reject reject

 "S&P" "EWMA95" 0.95 green accept accept accept accept accept reject reject

 "S&P" "Normal99" 0.99 yellow reject reject accept reject accept reject reject

 "S&P" "Historical99" 0.99 yellow reject reject accept reject accept reject reject

 "S&P" "EWMA99" 0.99 red reject reject accept reject accept reject reject

The results are similar to the previous results, and at the 95% level, the frequency
results are generally acceptable. However, the frequency results at the 99% level are
generally rejections. Regarding independence, most tests pass the conditional coverage
independence test (cci), which tests for independence on consecutive days. Notice that
all tests fail the time between failures independence test (tbfi), which takes into account
the times between all failures. This result suggests that all methods have issues with the
independence assumption.

To better understand how these results change given market conditions, look at the years
2000 and 2002 for the 95% VaR confidence level.

Ind2000 = (year(DatesTest) == 2000);

vbt2000 = varbacktest(ReturnsTest(Ind2000),[Normal95(Ind2000) Historical95(Ind2000) EWMA95(Ind2000)],...

 'PortfolioID','S&P, 2000','VaRID',{'Normal','Historical','EWMA'});

runtests(vbt2000)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ ____________ ________ _____ ______ ______ ______ ______ ______ ______ ______

2-24

 Value-at-Risk Estimation and Backtesting

 "S&P, 2000" "Normal" 0.95 green accept accept accept accept accept accept accept

 "S&P, 2000" "Historical" 0.95 green accept accept accept accept accept accept accept

 "S&P, 2000" "EWMA" 0.95 green accept accept accept accept accept accept accept

Ind2002 = (year(DatesTest) == 2002);

vbt2002 = varbacktest(ReturnsTest(Ind2002),[Normal95(Ind2002) Historical95(Ind2002) EWMA95(Ind2002)],...

 'PortfolioID','S&P, 2002','VaRID',{'Normal','Historical','EWMA'});

runtests(vbt2002)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ ____________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P, 2002" "Normal" 0.95 yellow reject reject accept reject reject reject reject

 "S&P, 2002" "Historical" 0.95 yellow reject accept accept reject reject reject reject

 "S&P, 2002" "EWMA" 0.95 green accept accept accept accept reject reject reject

For the year 2000, all three methods pass all the tests. However, for the year 2002, the
test results are mostly rejections for all methods. The EWMA method seems to perform
better in 2002, yet all methods fail the independence tests.

To get more insight into the independence tests, look into the conditional coverage
independence (cci) and the time between failures independence (tbfi) test details for the
year 2002. To access the test details for all tests, run the individual test functions.

cci(vbt2002)

ans =

 PortfolioID VaRID VaRLevel CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel

 ___________ ____________ ________ ______ _________ _________ ____________ ________ ___ ___ ___ ___ _________

 "S&P, 2002" "Normal" 0.95 reject 12.591 0.0003877 261 21 225 14 14 7 0.95

 "S&P, 2002" "Historical" 0.95 reject 6.3051 0.012039 261 20 225 15 15 5 0.95

 "S&P, 2002" "EWMA" 0.95 reject 4.6253 0.031504 261 14 235 11 11 3 0.95

In the CCI test, the probability p 01 of having a failure at time t, knowing that there was
no failure at time t-1 is given by

2-25

2 Market Risk Measurements Using VaR BackTesting Tools

The probability p 11 of having a failure at time t, knowing that there was failure at time
t-1 is given by

From the N00, N10, N01, N11 columns in the test results, the value of p 01 is at around
5% for the three methods, yet the values of p 11 are above 20%. Because there is evidence
that a failure is followed by another failure much more frequently than 5% of the time,
this CCI test fails.

In the time between failures independence test, look at the minimum, maximum,
andquartiles of the distribution of times between failures, in the columns TBFMin,
TBFQ1, TBFQ2, TBFQ3, TBFMax.

tbfi(vbt2002)

ans =

 PortfolioID VaRID VaRLevel TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel

 ___________ ____________ ________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "S&P, 2002" "Normal" 0.95 reject 53.936 0.00010087 261 21 1 1 5 17 48 0.95

 "S&P, 2002" "Historical" 0.95 reject 45.274 0.0010127 261 20 1 1.5 5.5 17 48 0.95

 "S&P, 2002" "EWMA" 0.95 reject 25.756 0.027796 261 14 1 4 7.5 20 48 0.95

For a VaR level of 95%, you expect an average time between failures of 20 days, or one
failure every 20 days. However, the median of the time between failures for the year 2002
ranges between 5 and 7.5 for the three methods. This result suggests that half of the
time, two consecutive failures occur within 5 to 7 days, much more frequently than the 20
expected days. Consequently, more test failures occur. For the normal method, the first
quartile is 1, meaning that 25% of the failures occur on consecutive days.

References

Nieppola, O. Backtesting Value-at-Risk Models. Helsinki School of Economics. 2009.

2-26

 Value-at-Risk Estimation and Backtesting

Danielsson, J. Financial Risk Forecasting: The Theory and Practive of Forecasting
Market Risk, with Implementation in R and MATLAB®. Wiley Finance, 2012.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff |
varbacktest

Related Examples
• “Overview of VaR Backtesting” on page 2-2
• “VaR Backtesting Workflow” on page 2-8

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6

2-27

3

Managing Consumer Credit Risk
Using the Binning Explorer for Credit
Scorecards

• “Overview of Binning Explorer” on page 3-2
• “Common Binning Explorer Tasks” on page 3-4
• “Binning Explorer Case Study Example” on page 3-26
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-44

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Overview of Binning Explorer

The Binning Explorer app enables you to interactively bin credit scorecard data. Use
the Binning Explorer to:

• Select an automatic binning algorithm.
• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

Binning Explorer complements the overall workflow for developing a credit scorecard
model.

Using Binning Explorer:

1. Open the Binning Explorer app.

• MATLAB® Toolstrip: On the Apps tab, under Computational Finance, click
the app icon.

• MATLAB Command prompt: Enter binningExplorer.
2. Import the data into the app.

You can import data into Binning Explorer by either starting directly from a
data set or by loading an existing creditscorecard object from the MATLAB
workspace.

3. Use Binning Explorer to work interactively with the binning assignments for a
scorecard.

4. Export the scorecard to a new creditscorecard object.

Continue the workflow from the MATLAB command line using creditscorecard
object functions from Financial Toolbox. For more information, see creditscorecard.

Using creditscorecard Object Functions in Financial Toolbox:
5. Fit a logistic regression model.
6. Review and format the credit scorecard points.
7. Score the data.

3-2

 Overview of Binning Explorer

Using Binning Explorer:

8. Calculate the probabilities of default for the data.
9. Validate the quality of the credit scorecard model.

For more detailed information on this workflow, see “Binning Explorer Case Study
Example” on page 3-26.

See Also

Apps
Binning Explorer

Functions
creditscorecard

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Binning Explorer Case Study Example” on page 3-26
• “Case Study for a Credit Scorecard Analysis”

More About
• “Credit Scorecard Modeling Workflow”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)

3-3

http://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-120558.html

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Common Binning Explorer Tasks

The Binning Explorer app supports the following tasks:

In this section...

“Import Data” on page 3-4
“Change Predictor Type” on page 3-5
“Change Binning Algorithm for One or More Predictors” on page 3-6
“Change Algorithm Options for Binning Algorithms” on page 3-7
“Split Bins for a Numeric Predictor” on page 3-11
“Split Bins for a Categorical Predictor” on page 3-12
“Manual Binning to Merge Bins for a Numeric or Categorical Predictor” on page 3-14
“Change Bin Boundaries for a Single Predictor” on page 3-16
“Change Bin Boundaries for Multiple Predictors” on page 3-17
“Set Options for Display” on page 3-19
“Export and Save the Binning” on page 3-20
“Troubleshoot the Binning” on page 3-20

Import Data

Binning Explorer enables you to import data by either starting directly from the data
stored in a MATLAB table or by loading an existing creditscorecard object.

Clean Start from Data

To start directly from data for a credit scorecard:

1 Place the credit scorecard data in your MATLAB workspace. The data must be in
a MATLAB table, where each column of data can be any one of the following data
types:

• Numeric
• Logical
• Cell array of character vectors
• Character array

3-4

 Common Binning Explorer Tasks

• Categorical

In addition, the table must contain a binary response variable.
2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under

Computational Finance, click the app icon.
3 Select the data from the Step 1 pane of the Import Data window.
4 From the Step 2 pane, set the Variable Type for each of the predictors, as needed.
5 From the Step 3 pane, select an initial binning algorithm and click Import Data.

The bins are plotted and displayed for each predictor. By clicking an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes.

Start from an Existing creditscorecard Object

To start using an existing creditscorecard object:

1 Place the creditscorecard object in your MATLAB workspace. Create the
creditscorecard object either by using the creditscorecard function or by
clicking Export in the Binning Explorer to export and save a creditscorecard
object to the MATLAB workspace.

2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under
Computational Finance, click the app icon.

3 From Step 1 pane of the Import Data window, select the creditscorecard object.
4 From the Step 3 pane, select a binning algorithm. When using an existing

creditscorecard object, it is recommended to select the No Binning option. To
display the predictor plots, click Import Data.

The bins are plotted and displayed for each predictor. By clicking an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes.

Change Predictor Type

After you import data or a creditscorecard object into Binning Explorer, you can
change the predictor type.

1 Click any predictor plot. The name of the selected predictor displays on the Binning
Explorer toolbar under Selected Predictor.

3-5

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

On the Binning Explorer toolbar, the predictor type for the selected predictor
displays under Predictor Type.

2 To change the predictor type, under Predictor Type, select: Numeric,
Categorical, or Ordinal. The predictor plot is updated for a change in the
predictor type and the details in the Bin Information and Predictor Information
panes are also updated.

Change Binning Algorithm for One or More Predictors

After you import data or a creditscorecard object into Binning Explorer, you can
change the binning algorithm for an individual predictor or for multiple predictors.

1 Click any predictor plot. The selected predictor plot displays with a blue outline.

Tip When you select a predictor plot with the blue outline, a status message appears
at the bottom of the Binning Explorer that displays the last binning information
for that predictor. Use this information to determine which binning algorithm is
most recently applied to an individual predictor plot.

2 On the Binning Explorer toolbar, under Apply Monotone, select Monotone,
Equal Frequency, or Equal Width. The predictor plot is updated with a change of
algorithm. The details in the Bin Information and Predictor Information panes
are also updated.

3 To change the binning algorithm for multiple predictors, multiselect more than
one predictor plot by using Ctrl + click to highlight each predictor plot with a blue
outline.

3-6

 Common Binning Explorer Tasks

4 Under Apply Monotone, select Monotone, Equal Frequency, or Equal Width.
All the selected predictor plots are updated for a change of algorithm.

Change Algorithm Options for Binning Algorithms

After you import data or a creditscorecard object into Binning Explorer, you can
change can change the binning algorithm for an individual predictor or for multiple
predictors.

1 Click any predictor plot. The predictor plot displays with a blue outline.

Tip When you select a predictor plot with the blue outline, a status message appears
at the bottom of the Binning Explorer that displays the last binning information
for that predictor. Use this information to determine which binning algorithm is
most recently applied to an individual predictor plot.

3-7

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

2 On the Binning Explorer toolbar, click Algorithm Options to open the Algorithm
Options dialog box.

3 From the Algorithm Options dialog box, select an Algorithm name:

• Monotone

• For Initial number of bins, enter an initial number of bins (default is 10).
The initial number of bins must be an integer > 2. Used for numeric predictors
only.

• For Trend, select one of the following:

• Auto (default) — Automatically determines if the WOE trend is
increasing or decreasing.

• Increasing — Looks for an increasing WOE trend.
• Decreasing — Looks for a decreasing WOE trend.

The value of Trend does not necessarily reflect that of the resulting WOE
curve. The Trend option tells the algorithm to look for an increasing or
decreasing trend, but the outcome might not show the desired trend. For
example, the algorithm cannot find a decreasing trend when the data actually

3-8

 Common Binning Explorer Tasks

has an increasing WOE trend. For more information on the Trend option, see
“Monotone”.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the

total number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm.

Note: Category Sorting can only be used with categorical predictors.

• Equal Frequency

• For Number of bins, enter the number of bins. The default is 5, and the
number of bins must be a positive number.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the

total number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm.

Note: You can use Category Sorting with categorical predictors only.

• Equal Width

3-9

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

• For Number of bins, enter the number of bins. The default is 5 and the
number of bins must be a positive number.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the

total number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm.

Note: You can use Category Sorting with categorical predictors only.

Click OK. The predictor plot is updated with the change of algorithm. The details in
the Bin Information and Predictor Information panes are also updated.

4 To change the binning algorithm for multiple predictors, multiselect more than
one predictor plot by using Ctrl+ click to highlight each predictor plot with a blue
outline.

5 On the Binning Explorer toolbar, click Algorithm Options to open the Algorithm
Options dialog box. Make your selection from the Algorithm Options dialog box and
click OK. The selected predictor plots are updated for the change of algorithm.

3-10

 Common Binning Explorer Tasks

Split Bins for a Numeric Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
split bins for a numeric predictor.

1 Click any numeric predictor plot. The predictor plot displays with a blue outline.

2 On the Binning Explorer toolbar, click Manual Binning to open the selected
numeric predictor in a new tabbed window.

3 Click a bin to enable the Split button for that bin.

Note: The Split button is enabled when the data range of the selected bin has more
than one value.

4 On the Binning Explorer toolbar, the Edges text boxes display values for the
edges of the selected bin. Click Split to open the Split dialog box.

3-11

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

5 Use the Number of bins control to split the selected bin into multiple bins. Click
OK to complete the split operation.

The plot for the selected numeric predictor is updated with the new bin information.
The details in the Bin Information and Predictor Information panes are also
updated.

Split Bins for a Categorical Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
split bins for a categorical predictor.

1 Click any categorical predictor plot. The predictor plot displays with a blue outline.

3-12

 Common Binning Explorer Tasks

2 On the Binning Explorer toolbar, click Manual Binning to open the selected
categorical predictor in a new tabbed window.

3 Click a bin to enable the Split button for that bin.

Note: The Split button is enabled when the selected bin has more than one category
in it.

3-13

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Use the Number of bins control to split the selected bin into multiple bins.

Use the arrow controls on the Split dialog box to control the contents for each of the
bins that you are splitting the selected bin into.

4 Click OK to complete the split operation.

The plot for the selected categorical predictor is updated with the new bin
information. The details in the Bin Information and Predictor Information
panes are also updated.

Manual Binning to Merge Bins for a Numeric or Categorical Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
split or merge bins for a predictor.

1 Click any predictor plot. The predictor plot displays with a blue outline.

3-14

 Common Binning Explorer Tasks

2 On the Binning Explorer toolbar, click Manual Binning to open the selected
predictor in a new tabbed window.

Note: The Merge button is active only when more than one bin is selected. Only
adjacent bins can be merged for numeric or ordinal predictors. Nonadjacent bins can
be merged for categorical predictors.

3 To merge bins, select two or more bins for merging by using Ctrl + click to
multiselect bins to display with blue outlines.

When performing a merge with a numeric predictor, the Edges text boxes on the
Binning Explorer toolbar display the values for the edges of the selected bins to
merge.

3-15

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

4 Click Merge to complete the merge operation. The plot for the selected predictor
is updated with the new bin information. The details in the Bin Information and
Predictor Information panes are also updated.

Change Bin Boundaries for a Single Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
change the bin boundaries for a single predictor.

1 Click any predictor plot. The predictor plot displays with a blue outline.

2 On the Binning Explorer toolbar, click Manual Binning. Click to select a specific
bin where you want to change the bin dimensions. The selected bin displays with a
blue outline.

3-16

 Common Binning Explorer Tasks

3 On the Binning Explorer toolbar, the Edges text boxes display values for the
edges of the selected bin.

Edit the values in the Edges text boxes to change the selected bin’s dimensions.
4 Press Enter to complete the operation. The plot for the selected predictor is updated

with the updated bin’s dimension information. The details in the Bin Information
and Predictor Information panes are also updated.

Change Bin Boundaries for Multiple Predictors

After you import data or a creditscorecard object into Binning Explorer, you can
change the algorithm applied to one or more predictors and you can also redefine the
number of bins.

1 Click any predictor plot. The predictor plot displays with a blue outline.

3-17

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Alternatively, select two or more predictors by using Ctrl + click to multiselect
predictors to display with blue outlines.

2 On the Binning Explorer toolbar, click Algorithm Options to open the Algorithm
Options dialog box.

3 From the Algorithm Options dialog box, under Algorithm name, select a binning
algorithm.

• For the EqualWidth and EqualFrequency options, enter a number in the
Number of bins box. Optionally, for EqualWidth and EqualFrequency
options, under Category Sorting, specify the type of sorting.

• For the Monotone option, the default of 10 is used for the Initial number of
bins. Optionally, you can set values for Trend and Category Sorting.

4 Click OK to complete the operation. The plots for the selected predictors are updated
with the new bin information. The details in the Bin Information and Predictor
Information panes are also updated.

3-18

 Common Binning Explorer Tasks

Set Options for Display

Binning Explorer has options for displaying predictor plots and plot options and the
associated tables displayed in Bin Information.

Plot Options

1 From the Binning Explorer toolbar item for Plot Options, select any of the
following predictor plot options:

• No labels (default)
• Bin count
• % Bin level
• % Data level
• % Total count
• WOE curve

2 The selected label is applied to all predictor plots.

Table Options

You can set the table display options for predictor information displayed in Bin
Information.

1 From the Binning Explorer toolbar item for Table Columns, select any of the
following options:

• Odds
• WOE
• InfoValue
• Entropy
• Members (option is enabled for categorical predictors)

2 When selected, these options are applied to all predictors for the information
displayed in Bin Information.

3-19

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Export and Save the Binning

Binning Explorer enables you to export and save your credit scorecard binning
definitions to a creditscorecard object.

1 Click Export and provide a creditscorecard object name. The
creditscorecard object is saved to the MATLAB workspace.

Note: If you export a previously existing creditscorecard object that was fit
(using fitmodel), all fitting settings in the creditscorecard object are lost. You
must rerun fitmodel on the updated creditscorecard object.

2 To reopen a previously saved creditscorecard object, click Import Data and
select the creditscorecard object from the Step 1 pane of the Import Data
window.

Troubleshoot the Binning

• “Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data
Properly” on page 3-20

• “Predictor Plot Appears Distorted” on page 3-22

This topic shows some of the results when using Binning Explorer with credit
scorecards that need troubleshooting. For details on the overall process of creating
and developing credit scorecards, see “Overview of Binning Explorer” on page 3-2 and
“Binning Explorer Case Study Example” on page 3-26.

Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data Properly

When you convert a numeric predictor with hundreds of values (for example, continuous
data) to categorical data, the resulting data has hundreds of categories. The following
example illustrates this scenario.

load CreditCardData

Open the Binning Explorer and select the numeric predictor AMBalance. From the
Binning Explorer toolbar, change the predictor type to Categorical.

Select Manual Binning on the Binning Explorer toolbar and click Split. The Split
dialog box displays as follows:

3-20

 Common Binning Explorer Tasks

The predictor has too many categories to display properly.

Solution: If you have a categorical predictor with a large number of categories, use
the Algorithm Options to change the binning algorithm for that predictor to Equal
Frequency, with the Number of bins set to 100 (or another smaller value). The Split
dialog box then displays properly.

3-21

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Predictor Plot Appears Distorted

When using the Binning Explorer, if you import data that has not been previously
binned and you select No Binning from the Import Data window, the resulting plots
might be distorted. For example, if you load the following data set into the MATLAB
workspace and use Binning Explorer to import the data using No Binning, the
following plot displays for the TmAtAddress predictor.

load CreditCardData

3-22

 Common Binning Explorer Tasks

Solution: When you import data that has not been previously binned, select Monotone
from the Import Data window instead. The following plot displays for the TmAtAddress
predictor.

3-23

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

See Also

Apps
Binning Explorer

Functions
creditscorecard

Related Examples
• “Binning Explorer Case Study Example” on page 3-26
• “Case Study for a Credit Scorecard Analysis”

More About
• “Overview of Binning Explorer” on page 3-2
• “Credit Scorecard Modeling Workflow”

3-24

 Common Binning Explorer Tasks

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)

3-25

http://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-120558.html

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Binning Explorer Case Study Example

This example shows how to create a credit scorecard using the Binning Explorer app.
Use the Binning Explorer to bin the data, plot the binned data information, and export
a creditscorecard object. Then use the creditscorecard object with functions
from Financial Toolbox to fit a logistic regression model, determine a score for the data,
determine the probabilities of default, and validate the credit scorecard model using
three different metrics.

Step 1. Load credit scorecard data into the MATLAB workspace.

Use the CreditCardData.mat file to load the data into the MATLAB workspace (using
a dataset from Refaat 2011).

load CreditCardData

disp(data(1:10,:))

 CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status

 ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________ ______

 1 53 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0

 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0

 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0

 4 50 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0

 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0

 6 65 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0

 7 34 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1

 8 50 57 Other Employed 51000 33 No 3041.2 0.13 0

 9 50 10 Tenant Unknown 52000 25 Yes 115.56 0.02 1

 10 49 30 Home Owner Unknown 53000 23 Yes 718.5 0.17 1

Step 2. Import the data into Binning Explorer.

Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under
Computational Finance, click the app icon. Alternatively, you can enter
binningExplorer on the command line.

From the Binning Explorer toolbar, select Import Data to open the Import Data
window.

3-26

 Binning Explorer Case Study Example

Under Step 1, select data.

Under Step 2, optionally set the Variable Type for each of the predictors. By default,
the last column in the data ('status' in this example) is set to 'Response'. The
response value with the highest count (0 in this example) is set to 'Good'. All other
variables are considered predictors. However, in this example, because 'CustID' is not a
predictor, set the Variable Type column for 'CustID' to Do not include.

Under Step 3, leave Monotone as the default initial binning algorithm.

Click Import Data to complete the import operation. Automatic binning using the
selected algorithm is applied to all predictors as they are imported into Binning
Explorer.

The bins are plotted and displayed for each predictor. By clicking to select an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes at the bottom of the app.

3-27

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Binning Explorer performs automatic binning for every predictor variable, using
the default 'Monotone' algorithm with default algorithm options. A monotonic,
ideally linear trend in the Weight of Evidence (WOE) is often desirable for credit
scorecards because this translates into linear points for a given predictor. WOE trends
are visualized on the plots for each predictor in Binning Explorer.

Perform some initial data exploration. Inquire about predictor statistics for the
'ResStatus' categorical variable.

3-28

 Binning Explorer Case Study Example

Click the ResStatus plot. The Bin Information pane contains the “Good” and “Bad”
frequencies and other bin statistics such as weight of evidence (WOE).

For numeric data, the same statistics are displayed. Click the CustIncome plot. The
Bin Information is updated with the information about CustIncome.

Step 3. Fine-tune the bins using manual binning in Binning Explorer.

Click the CustAge predictor plot. Notice that bins 1 and 2 have similar WOEs, as do bins
5 and 6.

3-29

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

To merge bins 1 and 2, from the Binning Explorer toolbar, click Manual Binning
to open the selected predictor in a new tabbed window. Alternatively, double-click the
predictor plot to open the Manual Binning tab. Select bin 1 and 2 for merging by using
Ctrl + click to multiselect these bins to display with blue outlines.

3-30

 Binning Explorer Case Study Example

On the Binning Explorer toolbar, the Edges text boxes display values for the edges of
the selected bins to merge.

Click Merge to finish merging bins 1 and 2. The CustAge predictor plot is updated
for the new bin information and the details in the Bin Information and Predictor
Information panes are also updated.

3-31

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Next, merge bins 4 and 5, because they also have similar WOEs.

3-32

 Binning Explorer Case Study Example

The CustAge predictor plot is updated with the new bin information. The details in the
Bin Information and Predictor Information panes are also updated.

Repeat this merge operation for the following bins that have similar WOEs:

• For CustIncome, merge bins 3, 4 and 5.
• For TmWBank, merge bins 2 and 3.
• For AMBalance, merge bins 2 and 3.

Now the bins for all predictors have close-to-linear WOE trends.

3-33

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Step 4. Export the creditscorecard object from Binning Explorer.

After you complete your binning assignments, using Binning Explorer, click Export
and provide a creditscorecard object name. The creditscorecard object (sc) is
saved to the MATLAB workspace.

Step 5. Fit a logistic regression model.

Use the fitmodel function to fit a logistic regression model to the WOE data. fitmodel
internally bins the training data, transforms it into WOE values, maps the response
variable so that 'Good' is 1, and fits a linear logistic regression model. By default,
fitmodel uses a stepwise procedure to determine which predictors belong in the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8954, Chi2Stat = 32.545914, PValue = 1.1640961e-08

2. Adding TmWBank, Deviance = 1467.3249, Chi2Stat = 23.570535, PValue = 1.2041739e-06

3. Adding AMBalance, Deviance = 1455.858, Chi2Stat = 11.466846, PValue = 0.00070848829

4. Adding EmpStatus, Deviance = 1447.6148, Chi2Stat = 8.2432677, PValue = 0.0040903428

5. Adding CustAge, Deviance = 1442.06, Chi2Stat = 5.5547849, PValue = 0.018430237

6. Adding ResStatus, Deviance = 1437.9435, Chi2Stat = 4.1164321, PValue = 0.042468555

7. Adding OtherCC, Deviance = 1433.7372, Chi2Stat = 4.2063597, PValue = 0.040272676

Generalized Linear regression model:

 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ______ __________

 (Intercept) 0.7024 0.064 10.975 5.0407e-28

 CustAge 0.61562 0.24783 2.4841 0.012988

 ResStatus 1.3776 0.65266 2.1107 0.034799

 EmpStatus 0.88592 0.29296 3.024 0.0024946

 CustIncome 0.69836 0.21715 3.216 0.0013001

 TmWBank 1.106 0.23266 4.7538 1.9958e-06

 OtherCC 1.0933 0.52911 2.0662 0.038806

 AMBalance 1.0437 0.32292 3.2322 0.0012285

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.42e-16

Step 6. Review and format scorecard points.

After fitting the logistic model, the points are unscaled by default and come directly from
the combination of WOE values and model coefficients. Use thedisplaypoints function
to summarizes the scorecard points.

p1 = displaypoints(sc);

3-34

 Binning Explorer Case Study Example

disp(p1)

 Predictors Bin Points

 ____________ __________________ _________

 'CustAge' '[-Inf,37)' -0.15314

 'CustAge' '[37,40)' -0.062247

 'CustAge' '[40,46)' 0.045763

 'CustAge' '[46,58)' 0.22888

 'CustAge' '[58,Inf]' 0.48354

 'ResStatus' 'Tenant' -0.031302

 'ResStatus' 'Home Owner' 0.12697

 'ResStatus' 'Other' 0.37652

 'EmpStatus' 'Unknown' -0.076369

 'EmpStatus' 'Employed' 0.31456

 'CustIncome' '[-Inf,29000)' -0.45455

 'CustIncome' '[29000,33000)' -0.1037

 'CustIncome' '[33000,42000)' 0.077768

 'CustIncome' '[42000,47000)' 0.24406

 'CustIncome' '[47000,Inf]' 0.43536

 'TmWBank' '[-Inf,12)' -0.18221

 'TmWBank' '[12,45)' -0.038279

 'TmWBank' '[45,71)' 0.39569

 'TmWBank' '[71,Inf]' 0.95074

 'OtherCC' 'No' -0.193

 'OtherCC' 'Yes' 0.15868

 'AMBalance' '[-Inf,558.88)' 0.3552

 'AMBalance' '[558.88,1597.44)' -0.026797

 'AMBalance' '[1597.44,Inf]' -0.21168

Use modifybins to give the bins more descriptive labels.
sc = modifybins(sc,'CustAge','BinLabels',...

{'Up to 36' '37 to 39' '40 to 45' '46 to 57' '58 and up'});

sc = modifybins(sc,'CustIncome','BinLabels',...

{'Up to 28999' '29000 to 32999' '33000 to 41999' '42000 to 46999' '47000 and up'});

sc = modifybins(sc,'TmWBank','BinLabels',...

{'Up to 11' '12 to 44' '45 to 70' '71 and up'});

sc = modifybins(sc,'AMBalance','BinLabels',...

{'Up to 558.87' '558.88 to 1597.43' '1597.44 and up'});

p1 = displaypoints(sc);

disp(p1)

 Predictors Bin Points

 ____________ ___________________ _________

 'CustAge' 'Up to 36' -0.15314

 'CustAge' '37 to 39' -0.062247

 'CustAge' '40 to 45' 0.045763

 'CustAge' '46 to 57' 0.22888

 'CustAge' '58 and up' 0.48354

 'ResStatus' 'Tenant' -0.031302

 'ResStatus' 'Home Owner' 0.12697

3-35

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

 'ResStatus' 'Other' 0.37652

 'EmpStatus' 'Unknown' -0.076369

 'EmpStatus' 'Employed' 0.31456

 'CustIncome' 'Up to 28999' -0.45455

 'CustIncome' '29000 to 32999' -0.1037

 'CustIncome' '33000 to 41999' 0.077768

 'CustIncome' '42000 to 46999' 0.24406

 'CustIncome' '47000 and up' 0.43536

 'TmWBank' 'Up to 11' -0.18221

 'TmWBank' '12 to 44' -0.038279

 'TmWBank' '45 to 70' 0.39569

 'TmWBank' '71 and up' 0.95074

 'OtherCC' 'No' -0.193

 'OtherCC' 'Yes' 0.15868

 'AMBalance' 'Up to 558.87' 0.3552

 'AMBalance' '558.88 to 1597.43' -0.026797

 'AMBalance' '1597.44 and up' -0.21168

Points are usually scaled and are also often rounded. To round and scale the points,
use the formatpoints function. For example, you can set a target level of points
corresponding to a target odds level and also set the required points-to-double-the-odds
(PDO).
TargetPoints = 500;

TargetOdds = 2;

PDO = 50; % Points to double the odds

sc = formatpoints(sc,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);

p2 = displaypoints(sc);

disp(p2)

 Predictors Bin Points

 ____________ ___________________ ______

 'CustAge' 'Up to 36' 53.239

 'CustAge' '37 to 39' 59.796

 'CustAge' '40 to 45' 67.587

 'CustAge' '46 to 57' 80.796

 'CustAge' '58 and up' 99.166

 'ResStatus' 'Tenant' 62.028

 'ResStatus' 'Home Owner' 73.445

 'ResStatus' 'Other' 91.446

 'EmpStatus' 'Unknown' 58.777

 'EmpStatus' 'Employed' 86.976

 'CustIncome' 'Up to 28999' 31.497

 'CustIncome' '29000 to 32999' 56.805

 'CustIncome' '33000 to 41999' 69.896

3-36

 Binning Explorer Case Study Example

 'CustIncome' '42000 to 46999' 81.891

 'CustIncome' '47000 and up' 95.69

 'TmWBank' 'Up to 11' 51.142

 'TmWBank' '12 to 44' 61.524

 'TmWBank' '45 to 70' 92.829

 'TmWBank' '71 and up' 132.87

 'OtherCC' 'No' 50.364

 'OtherCC' 'Yes' 75.732

 'AMBalance' 'Up to 558.87' 89.908

 'AMBalance' '558.88 to 1597.43' 62.353

 'AMBalance' '1597.44 and up' 49.016

Step 7. Score the data.

Use the score function to compute the scores for the training data. You can also pass an
optional data input. to score, for example, validation data. The points per predictor for
each customer are provided as an optional output.

[Scores,Points] = score(sc);

disp(Scores(1:10))

disp(Points(1:10,:))

 528.2044

 554.8861

 505.2406

 564.0717

 554.8861

 586.1904

 441.8755

 515.8125

 524.4553

 508.3169

 CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance

 _______ _________ _________ __________ _______ _______ _________

 80.796 62.028 58.777 95.69 92.829 75.732 62.353

 99.166 73.445 86.976 95.69 61.524 75.732 62.353

 80.796 62.028 86.976 69.896 92.829 50.364 62.353

 80.796 73.445 86.976 95.69 61.524 75.732 89.908

 99.166 73.445 86.976 95.69 61.524 75.732 62.353

 99.166 73.445 86.976 95.69 92.829 75.732 62.353

 53.239 73.445 58.777 56.805 61.524 75.732 62.353

 80.796 91.446 86.976 95.69 61.524 50.364 49.016

 80.796 62.028 58.777 95.69 61.524 75.732 89.908

 80.796 73.445 58.777 95.69 61.524 75.732 62.353

Step 8. Calculate the probability of default.

To calculate the probability of default, use the probdefault function.
pd = probdefault(sc);

3-37

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Define the probability of being “Good” and plot the predicted odds versus the formatted
scores. Visually analyze that the target points and target odds match and that the points-
to-double-the-odds (PDO) relationship holds.
ProbGood = 1-pd;

PredictedOdds = ProbGood./pd;

figure

scatter(Scores,PredictedOdds)

title('Predicted Odds vs. Score')

xlabel('Score')

ylabel('Predicted Odds')

hold on

xLimits = xlim;

yLimits = ylim;

% Target points and odds

plot([TargetPoints TargetPoints],[yLimits(1) TargetOdds],'k:')

plot([xLimits(1) TargetPoints],[TargetOdds TargetOdds],'k:')

% Target points plus PDO

plot([TargetPoints+PDO TargetPoints+PDO],[yLimits(1) 2*TargetOdds],'k:')

plot([xLimits(1) TargetPoints+PDO],[2*TargetOdds 2*TargetOdds],'k:')

% Target points minus PDO

plot([TargetPoints-PDO TargetPoints-PDO],[yLimits(1) TargetOdds/2],'k:')

plot([xLimits(1) TargetPoints-PDO],[TargetOdds/2 TargetOdds/2],'k:')

hold off

3-38

 Binning Explorer Case Study Example

Step 9. Validate the credit scorecard model using the CAP, ROC, and Kolmogorov-Smirnov
statistic

The creditscorecard object supports three validation methods, the Cumulative
Accuracy Profile (CAP), the Receiver Operating Characteristic (ROC), and the
Kolmogorov-Smirnov (KS) statistic. For more information on CAP, ROC, and KS, see
validatemodel.
[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});

disp(Stats)

disp(T(1:15,:))

 Measure Value

 ______________________ _______

 'Accuracy Ratio' 0.32225

 'Area under ROC curve' 0.66113

 'KS statistic' 0.22324

 'KS score' 499.18

 Scores ProbDefault TrueBads FalseBads TrueGoods FalseGoods Sensitivity FalseAlarm PctObs

 ______ ___________ ________ _________ _________ __________ ___________ __________ __________

 369.4 0.7535 0 1 802 397 0 0.0012453 0.00083333

3-39

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

 377.86 0.73107 1 1 802 396 0.0025189 0.0012453 0.0016667

 379.78 0.7258 2 1 802 395 0.0050378 0.0012453 0.0025

 391.81 0.69139 3 1 802 394 0.0075567 0.0012453 0.0033333

 394.77 0.68259 3 2 801 394 0.0075567 0.0024907 0.0041667

 395.78 0.67954 4 2 801 393 0.010076 0.0024907 0.005

 396.95 0.67598 5 2 801 392 0.012594 0.0024907 0.0058333

 398.37 0.67167 6 2 801 391 0.015113 0.0024907 0.0066667

 401.26 0.66276 7 2 801 390 0.017632 0.0024907 0.0075

 403.23 0.65664 8 2 801 389 0.020151 0.0024907 0.0083333

 405.09 0.65081 8 3 800 389 0.020151 0.003736 0.0091667

 405.15 0.65062 11 5 798 386 0.027708 0.0062267 0.013333

 405.37 0.64991 11 6 797 386 0.027708 0.007472 0.014167

 406.18 0.64735 12 6 797 385 0.030227 0.007472 0.015

 407.14 0.64433 13 6 797 384 0.032746 0.007472 0.015833

3-40

 Binning Explorer Case Study Example

3-41

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | plotbins |
predictorinfo | probdefault | score | setmodel | validatemodel

Related Examples
• “Troubleshooting Credit Scorecard Results”
• “Credit Rating by Bagging Decision Trees”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-44

More About
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• Monotone Adjacent Pooling Algorithm (MAPA)

3-42

 Binning Explorer Case Study Example

• creditscorecard

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)

3-43

http://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-120558.html

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Stress Testing of Consumer Credit Default Probabilities Using Panel
Data

This example shows how to work with consumer (retail) credit panel data to visualize
observed default rates at different levels. It also shows how to fit a model to predict
probabilities of default and perform a stress-testing analysis.

The panel data set of consumer loans enables you to identify default rate patterns
for loans of different ages, or years on books. You can use information about a score
group to distinguish default rates for different score levels. In addition, you can use
macroeconomic information to assess how the state of the economy affects consumer loan
default rates.

A standard logistic regression model, a type of generalized linear model, is fitted
to the retail credit panel data with and without macroeconomic predictors. The
example describes how to fit a more advanced model to account for panel data effects, a
generalized linear mixed effects model. However, the panel effects are negligible for the
data set in this example and the standard logistic model is preferred for efficiency.

The standard logistic regression model predicts probabilities of default for all score
levels, years on books, and macroeconomic variable scenarios. When the standard logistic
regression model is used for a stress-testing analysis, the model predicts probabilities
of default for a given baseline, as well as default probabilites for adverse and severely
adverse macroeconomic scenarios.

Panel Data Description

The main data set (data) contains the following variables:

• ID: Loan identifier.
• ScoreGroup: Credit score at the beginning of the loan, discretized into three groups:

High Risk, Medium Risk, and Low Risk.
• YOB: Years on books.
• Default: Default indicator. This is the response variable.
• Year: Calendar year.

There is also a small data set (dataMacro) with macroeconomic data for the
corresponding calendar years:

• Year: Calendar year.

3-44

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

• GDP: Gross domestic product growth (year over year).
• Market: Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding
calendar year. The score group is a discretization of the original credit score when
the loan started. A value of 1 for Default means that the loan defaulted in the
corresponding calendar year.

There is also a third data set (dataMacroStress) with baseline, adverse, and severely
adverse scenarios for the macroeconomic variables. This table is used for the stress-
testing analysis.

This example uses simulated data, but the same approach has been successfully applied
to real data sets.

Load the Panel Data

Load the data and view the first 10 and last 10 rows of the table. The panel data is
stacked, in the sense that observations for the same ID are stored in contiguous rows,
creating a tall, thin table. The panel is unbalanced, because not all IDs have the same
number of observations.

load RetailCreditPanelData.mat

fprintf('\nFirst ten rows:\n')

disp(data(1:10,:))

fprintf('Last ten rows:\n')

disp(data(end-9:end,:))

nRows = height(data);

UniqueIDs = unique(data.ID);

nIDs = length(UniqueIDs);

fprintf('Total number of IDs: %d\n',nIDs)

fprintf('Total number of rows: %d\n',nRows)

First ten rows:

 ID ScoreGroup YOB Default Year

 __ ___________ ___ _______ ____

 1 Low Risk 1 0 1997

3-45

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

 1 Low Risk 2 0 1998

 1 Low Risk 3 0 1999

 1 Low Risk 4 0 2000

 1 Low Risk 5 0 2001

 1 Low Risk 6 0 2002

 1 Low Risk 7 0 2003

 1 Low Risk 8 0 2004

 2 Medium Risk 1 0 1997

 2 Medium Risk 2 0 1998

Last ten rows:

 ID ScoreGroup YOB Default Year

 _____ ___________ ___ _______ ____

 96819 High Risk 6 0 2003

 96819 High Risk 7 0 2004

 96820 Medium Risk 1 0 1997

 96820 Medium Risk 2 0 1998

 96820 Medium Risk 3 0 1999

 96820 Medium Risk 4 0 2000

 96820 Medium Risk 5 0 2001

 96820 Medium Risk 6 0 2002

 96820 Medium Risk 7 0 2003

 96820 Medium Risk 8 0 2004

Total number of IDs: 96820

Total number of rows: 646724

Default Rates by Score Groups and Years on Books

Use the credit score group as a grouping variable to compute the observed default rate
for each score group. For this, use the varfun function to compute the mean of the
Default variable, grouping by the ScoreGroup variable. Plot the results on a bar chart.
As expected, the default rate goes down as the credit quality improves.

DefRateByScore = varfun(@mean,data,'InputVariables','Default',...

 'GroupingVariables','ScoreGroup');

NumScoreGroups = height(DefRateByScore);

disp(DefRateByScore)

figure;

bar(double(DefRateByScore.ScoreGroup),DefRateByScore.mean_Default*100)

set(gca,'XTickLabel',categories(data.ScoreGroup))

3-46

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

title('Default Rate vs. Score Group')

xlabel('Score Group')

ylabel('Observed Default Rate (%)')

grid on

 ScoreGroup GroupCount mean_Default

 ___________ __________ ____________

 High Risk 2.0999e+05 0.017167

 Medium Risk 2.1743e+05 0.0086006

 Low Risk 2.193e+05 0.0046784

3-47

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Next, compute default rates grouping by years on books (represented by the YOB
variable). The resulting rates are conditional one-year default rates. For example, the
default rate for the third year on books is the proportion of loans defaulting in the third
year, relative to the number of loans that are in the portfolio past the second year. In
other words, the default rate for the third year is the number of rows with YOB = 3 and
Default = 1, divided by the number of rows with YOB = 3.

Plot the results. There is a clear downward trend, with default rates going down as the
number of years on books increases. Years three and four have similar default rates.
However, it is unclear from this plot whether this is a characteristic of the loan product
or an effect of the macroeconomic environment.

DefRateByYOB = varfun(@mean,data,'InputVariables','Default',...

 'GroupingVariables','YOB');

NumYOB = height(DefRateByYOB);

disp(DefRateByYOB)

figure;

plot(double(DefRateByYOB.YOB),DefRateByYOB.mean_Default*100,'-*')

title('Default Rate vs. Years on Books')

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

grid on

 YOB GroupCount mean_Default

 ___ __________ ____________

 1 96820 0.017507

 2 94535 0.012704

 3 92497 0.011168

 4 91068 0.010728

 5 89588 0.0085949

 6 88570 0.006413

 7 61689 0.0033231

 8 31957 0.0016272

3-48

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

Now, group both by score group and number of years on books. Plot the results. The
plot shows that all score groups behave similarly as time progresses, with a general
downward trend. Years three and four are an exception to the downward trend: the rates
flatten for the High Risk group, and go up in year three for the Low Risk group.

DefRateByScoreYOB = varfun(@mean,data,'InputVariables','Default',...

 'GroupingVariables',{'ScoreGroup','YOB'});

% Display output table to show the way it is structured

% Display only the first 10 rows, for brevity

disp(DefRateByScoreYOB(1:10,:))

disp(' ...')

DefRateByScoreYOB2 = reshape(DefRateByScoreYOB.mean_Default,...

3-49

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

 NumYOB,NumScoreGroups);

figure;

plot(DefRateByScoreYOB2*100,'-*')

title('Default Rate vs. Years on Books')

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

legend(categories(data.ScoreGroup))

grid on

 ScoreGroup YOB GroupCount mean_Default

 ___________ ___ __________ ____________

 High Risk 1 32601 0.029692

 High Risk 2 31338 0.021252

 High Risk 3 30138 0.018448

 High Risk 4 29438 0.018276

 High Risk 5 28661 0.014794

 High Risk 6 28117 0.011168

 High Risk 7 19606 0.0056615

 High Risk 8 10094 0.0027739

 Medium Risk 1 32373 0.014302

 Medium Risk 2 31775 0.011676

 ...

3-50

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

Years on Books Versus Calendar Years

The data contains three cohorts, or vintages: loans started in 1997, 1998, and 1999. No
loan in the panel data started after 1999.

This section shows how to visualize the default rate for each cohort separately. The
default rates for all cohorts are plotted, both against the number of years on books
and against the calendar year. Patterns in the years on books suggest the loan
product characteristics. Patterns in the calendar years suggest the influence of the
macroeconomic environment.

From years two through four on books, the curves show different patterns for the three
cohorts. When plotted against the calendar year, however, the three cohorts show similar
behavior from 2000 through 2002. The curves flatten during that period.

3-51

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

% Get IDs of 1997, 1998, and 1999 cohorts

IDs1997 = data.ID(data.YOB==1&data.Year==1997);

IDs1998 = data.ID(data.YOB==1&data.Year==1998);

IDs1999 = data.ID(data.YOB==1&data.Year==1999);

% IDs2000AndUp is unused, it is only computed to show that this is empty,

% no loans started after 1999

IDs2000AndUp = data.ID(data.YOB==1&data.Year>1999);

% Get default rates for each cohort separately

ObsDefRate1997 = varfun(@mean,data(ismember(data.ID,IDs1997),:),...

 'InputVariables','Default','GroupingVariables','YOB');

ObsDefRate1998 = varfun(@mean,data(ismember(data.ID,IDs1998),:),...

 'InputVariables','Default','GroupingVariables','YOB');

ObsDefRate1999 = varfun(@mean,data(ismember(data.ID,IDs1999),:),...

 'InputVariables','Default','GroupingVariables','YOB');

% Plot against the years on books

figure;

plot(ObsDefRate1997.YOB,ObsDefRate1997.mean_Default*100,'-*')

hold on

plot(ObsDefRate1998.YOB,ObsDefRate1998.mean_Default*100,'-*')

plot(ObsDefRate1999.YOB,ObsDefRate1999.mean_Default*100,'-*')

hold off

title('Default Rate vs. Years on Books')

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Cohort 97','Cohort 98','Cohort 99')

grid on

% Plot against the calendar year

Year = unique(data.Year);

figure;

plot(Year,ObsDefRate1997.mean_Default*100,'-*')

hold on

plot(Year(2:end),ObsDefRate1998.mean_Default*100,'-*')

plot(Year(3:end),ObsDefRate1999.mean_Default*100,'-*')

hold off

title('Default Rate vs. Calendar Year')

xlabel('Calendar Year')

ylabel('Default Rate (%)')

legend('Cohort 97','Cohort 98','Cohort 99')

grid on

3-52

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-53

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Model of Default Rates Using Score Group and Years on Books

After you visualize the data, you can build predictive models for the default rates.

Split the panel data into training and testing sets, defining these sets based on ID
numbers.

NumTraining = floor(0.6*nIDs);

rng('default');

TrainIDInd = randsample(nIDs,NumTraining);

TrainDataInd = ismember(data.ID,UniqueIDs(TrainIDInd));

TestDataInd = ~TrainDataInd;

3-54

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

The first model uses only score group and number of years on books as predictors of the
default rate p. The odds of defaulting are defined as p/(1-p). The logistic model relates
the logarithm of the odds, or log odds, to the predictors as follows:

1M is an indicator with a value 1 for Medium Risk loans and 0 otherwise, and similarly
for 1L for Low Risk loans. This is a standard way of handling a categorical predictor
such as ScoreGroup. There is effectively a different constant for each risk level: aH for
High Risk, aH+aM for Medium Risk, and aH+aL for Low Risk.

To calibrate the model, call the fitglm function from Statistics and Machine Learning
Toolbox™. The formula above is expressed as

Default ~ 1 + ScoreGroup + YOB

The 1 + ScoreGroup terms account for the baseline constant and the adjustments for
risk level. Set the optional argument Distribution to binomial to indicate that a
logistic model is desired (that is, a model with log odds on the left side).

ModelNoMacro = fitglm(data(TrainDataInd,:),...

 'Default ~ 1 + ScoreGroup + YOB',...

 'Distribution','binomial');

disp(ModelNoMacro)

Generalized linear regression model:

 logit(Default) ~ 1 + ScoreGroup + YOB

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ________ _______ ___________

 (Intercept) -3.2453 0.033768 -96.106 0

 ScoreGroup_Medium Risk -0.7058 0.037103 -19.023 1.1014e-80

 ScoreGroup_Low Risk -1.2893 0.045635 -28.253 1.3076e-175

 YOB -0.22693 0.008437 -26.897 2.3578e-159

388018 observations, 388014 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0

3-55

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

For any row in the data, the value of p is not observed, only a 0 or 1 default indicator
is observed. The calibration finds model coefficients, and the predicted values of p for
individual rows can be recovered with the predict function.

The Intercept coefficient is the constant for the High Risk level (the aH term),
and the ScoreGroup_Medium Risk and ScoreGroup_Low Risk coefficients are the
adjustments for Medium Risk and Low Risk levels (the aM and aL terms).

The default probability p and the log odds (the left side of the model) move in the same
direction when the predictors change. Therefore, because the adjustments for Medium
Risk and Low Risk are negative, the default rates are lower for better risk levels, as
expected. The coefficient for number of years on books is also negative, consistent with
the overall downward trend for number of years on books observed in the data.

To account for panel data effects, a more advanced model using mixed effects can be
fitted using the fitglme function from Statistics and Machine Learning Toolbox™.
Although this model is not fitted in this example, the code is very similar:

ModelNoMacro = fitglme(data(TrainDataInd,:),...

'Default ~ 1 + ScoreGroup + YOB + (1|ID)',...

'Distribution','binomial');

The (1|ID) term in the formula adds a random effect to the model. This effect is a
predictor whose values are not given in the data, but calibrated together with the
model coefficients. A random value is calibrated for each ID. This additional calibration
requirement substantially increases the computational time to fit the model in this case,
because of the very large number of IDs. For the panel data set in this example, the
random term has a negligible effect. The variance of the random effects is very small and
the model coefficients barely change when the random effect is introduced. The simpler
logistic regression model is preferred, because it is faster to calibrate and to predict, and
the default rates predicted with both models are essentially the same.

Predict the probability of default for training and testing data.

data.PDNoMacro = zeros(height(data),1);

% Predict in-sample

data.PDNoMacro(TrainDataInd) = predict(ModelNoMacro,data(TrainDataInd,:));

% Predict out-of-sample

data.PDNoMacro(TestDataInd) = predict(ModelNoMacro,data(TestDataInd,:));

Visualize the in-sample fit.

3-56

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

PredPDTrainYOB = varfun(@mean,data(TrainDataInd,:),...

 'InputVariables',{'Default','PDNoMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_Default*100,'*');

hold on

plot(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_PDNoMacro*100);

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','Predicted')

title('Model Fit (Training Data)')

grid on

3-57

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Visualize the out-of-sample fit.

PredPDTestYOB = varfun(@mean,data(TestDataInd,:),...

 'InputVariables',{'Default','PDNoMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTestYOB.YOB,PredPDTestYOB.mean_Default*100,'*');

hold on

plot(PredPDTestYOB.YOB,PredPDTestYOB.mean_PDNoMacro*100);

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','Predicted')

title('Model Fit (Testing Data)')

grid on

3-58

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

Visualize the in-sample fit for all score groups. The out-of-sample fit can be computed
and visualized in a similar way.

PredPDTrainScoreYOB = varfun(@mean,data(TrainDataInd,:),...

 'InputVariables',{'Default','PDNoMacro'},...

 'GroupingVariables',{'ScoreGroup','YOB'});

figure;

hs = gscatter(PredPDTrainScoreYOB.YOB,...

 PredPDTrainScoreYOB.mean_Default*100,...

 PredPDTrainScoreYOB.ScoreGroup,'rbmgk','*');

mean_PDNoMacroMat = reshape(PredPDTrainScoreYOB.mean_PDNoMacro,...

 NumYOB,NumScoreGroups);

hold on

3-59

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

hp = plot(mean_PDNoMacroMat*100);

for ii=1:NumScoreGroups

 hp(ii).Color = hs(ii).Color;

end

hold off

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

legend(categories(data.ScoreGroup))

title('Model Fit by Score Group (Training Data)')

grid on

Model of Default Rates Including Macroeconomic Variables

The trend predicted with the previous model, as a function of years on books, has a very
regular decreasing pattern. The data, however, shows some deviations from that trend.

3-60

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

To try to account for those deviations, add the gross domestic product annual growth
(represented by the GDP variable) and stock market annual returns (represented by the
Market variable) to the model.

Expand the data set to add one column for GDP and one for Market, using the data from
the dataMacro table.

data.GDP = dataMacro.GDP(data.Year-1996);

data.Market = dataMacro.Market(data.Year-1996);

disp(data(1:10,:))

 ID ScoreGroup YOB Default Year PDNoMacro GDP Market

 __ ___________ ___ _______ ____ _________ _____ ______

 1 Low Risk 1 0 1997 0.0084797 2.72 7.61

 1 Low Risk 2 0 1998 0.0067697 3.57 26.24

 1 Low Risk 3 0 1999 0.0054027 2.86 18.1

 1 Low Risk 4 0 2000 0.0043105 2.43 3.19

 1 Low Risk 5 0 2001 0.0034384 1.26 -10.51

 1 Low Risk 6 0 2002 0.0027422 -0.59 -22.95

 1 Low Risk 7 0 2003 0.0021867 0.63 2.78

 1 Low Risk 8 0 2004 0.0017435 1.85 9.48

 2 Medium Risk 1 0 1997 0.015097 2.72 7.61

 2 Medium Risk 2 0 1998 0.012069 3.57 26.24

Fit the model with the macroeconomic variables by expanding the model formula to
include the GDP and the Market variables.

ModelMacro = fitglm(data(TrainDataInd,:),...

 'Default ~ 1 + ScoreGroup + YOB + GDP + Market',...

 'Distribution','binomial');

disp(ModelMacro)

Generalized linear regression model:

 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market

 Distribution = Binomial

Estimated Coefficients:

3-61

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

 Estimate SE tStat pValue

 __________ _________ _______ ___________

 (Intercept) -2.667 0.10146 -26.287 2.6919e-152

 ScoreGroup_Medium Risk -0.70751 0.037108 -19.066 4.8223e-81

 ScoreGroup_Low Risk -1.2895 0.045639 -28.253 1.2892e-175

 YOB -0.32082 0.013636 -23.528 2.0867e-122

 GDP -0.12295 0.039725 -3.095 0.0019681

 Market -0.0071812 0.0028298 -2.5377 0.011159

388018 observations, 388012 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 1.97e+03, p-value = 0

Both macroeconomic variables show a negative coefficient, consistent with the intuition
that higher economic growth reduces default rates.

Predict the probability of default for the training and testing data.

data.PDMacro = zeros(height(data),1);

% Predict in-sample

data.PDMacro(TrainDataInd) = predict(ModelMacro,data(TrainDataInd,:));

% Predict out-of-sample

data.PDMacro(TestDataInd) = predict(ModelMacro,data(TestDataInd,:));

Visualize the in-sample fit. As desired, the model including macroeconomic variables, or
macro model, deviates from the smooth trend predicted by the previous model. The rates
predicted with the macro model match more closely with the observed default rates.

PredPDTrainYOBMacro = varfun(@mean,data(TrainDataInd,:),...

 'InputVariables',{'Default','PDMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTrainYOBMacro.YOB,PredPDTrainYOBMacro.mean_Default*100,'*');

hold on

plot(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_PDNoMacro*100); % No Macro

plot(PredPDTrainYOBMacro.YOB,PredPDTrainYOBMacro.mean_PDMacro*100); % Macro

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','No Macro', 'Macro')

title('Macro Model Fit (Training Data)')

grid on

3-62

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

Visualize the out-of-sample fit.

PredPDTestYOBMacro = varfun(@mean,data(TestDataInd,:),...

 'InputVariables',{'Default','PDMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTestYOBMacro.YOB,PredPDTestYOBMacro.mean_Default*100,'*');

hold on

plot(PredPDTestYOB.YOB,PredPDTestYOB.mean_PDNoMacro*100); % No Macro

plot(PredPDTestYOBMacro.YOB,PredPDTestYOBMacro.mean_PDMacro*100); % Macro

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','No Macro', 'Macro')

3-63

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

title('Macro Model Fit (Testing Data)')

grid on

Visualize the in-sample fit for all score groups.

PredPDTrainScoreYOBMacro = varfun(@mean,data(TrainDataInd,:),...

 'InputVariables',{'Default','PDMacro'},...

 'GroupingVariables',{'ScoreGroup','YOB'});

figure;

hs = gscatter(PredPDTrainScoreYOBMacro.YOB,...

 PredPDTrainScoreYOBMacro.mean_Default*100,...

 PredPDTrainScoreYOBMacro.ScoreGroup,'rbmgk','*');

mean_PDMacroMat = reshape(PredPDTrainScoreYOBMacro.mean_PDMacro,...

 NumYOB,NumScoreGroups);

3-64

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

hold on

hp = plot(mean_PDMacroMat*100);

for ii=1:NumScoreGroups

 hp(ii).Color = hs(ii).Color;

end

hold off

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

legend(categories(data.ScoreGroup))

title('Macro Model Fit by Score Group (Training Data)')

grid on

Stress Testing of Probability of Default

Use the fitted macro model to stress-test the predicted probabilities of default.

3-65

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Assume the following are stress scenarios for the macroeconomic variables provided, for
example, by a regulator.

disp(dataMacroStress)

 GDP Market

 _____ ______

 Baseline 2.27 15.02

 Adverse 1.31 4.56

 Severe -0.22 -5.64

Set up a basic data table for predicting the probabilities of default. This is a dummy data
table, with one row for each combination of score group and number of years on books.

dataBaseline = table;

[ScoreGroup,YOB]=meshgrid(1:NumScoreGroups,1:NumYOB);

dataBaseline.ScoreGroup = categorical(ScoreGroup(:),1:NumScoreGroups,...

 categories(data.ScoreGroup),'Ordinal',true);

dataBaseline.YOB = YOB(:);

dataBaseline.ID = ones(height(dataBaseline),1);

dataBaseline.GDP = zeros(height(dataBaseline),1);

dataBaseline.Market = zeros(height(dataBaseline),1);

To make the predictions, set the same macroeconomic conditions (baseline, adverse, or
severely adverse) for all combinations of score groups and number of years on books.

% Predict baseline the probabilities of default

dataBaseline.GDP(:) = dataMacroStress.GDP('Baseline');

dataBaseline.Market(:) = dataMacroStress.Market('Baseline');

dataBaseline.PD = predict(ModelMacro,dataBaseline);

% Predict the probabilities of default in the adverse scenario

dataAdverse = dataBaseline;

dataAdverse.GDP(:) = dataMacroStress.GDP('Adverse');

dataAdverse.Market(:) = dataMacroStress.Market('Adverse');

dataAdverse.PD = predict(ModelMacro,dataAdverse);

% Predict the probabilities of default in the severely adverse scenario

dataSevere = dataBaseline;

dataSevere.GDP(:) = dataMacroStress.GDP('Severe');

dataSevere.Market(:) = dataMacroStress.Market('Severe');

dataSevere.PD = predict(ModelMacro,dataSevere);

3-66

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

Visualize the average predicted probability of default across score groups under the three
alternative regulatory scenarios. Here, all score groups are implicitly weighted equally.
However, predictions can also be made at a loan level for any given portfolio to make the
predicted default rates consistent with the actual distribution of loans in the portfolio.
The same visualization can be produced for each score group separately.

PredPDYOB = zeros(NumYOB,3);

PredPDYOB(:,1) = mean(reshape(dataBaseline.PD,NumYOB,NumScoreGroups),2);

PredPDYOB(:,2) = mean(reshape(dataAdverse.PD,NumYOB,NumScoreGroups),2);

PredPDYOB(:,3) = mean(reshape(dataSevere.PD,NumYOB,NumScoreGroups),2);

figure;

bar(PredPDYOB*100);

xlabel('Years on Books')

ylabel('Predicted Default Rate (%)')

legend('Baseline','Adverse','Severe')

title('Stress Test, Probability of Default')

grid on

3-67

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

References

1 Generalized Linear Models documentation: http://www.mathworks.com/help/stats/
generalized-linear-regression.html.

2 Generalized Linear Mixed Effects Models documentation: http://
www.mathworks.com/help/stats/generalized-linear-mixed-effects-models.html.

3 Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): http://
www.federalreserve.gov/bankinforeg/ccar.htm.

4 Bank of England, Stress Testing: http://www.bankofengland.co.uk/financialstability/
pages/fpc/stresstest.aspx.

3-68

http://www.mathworks.com/help/stats/generalized-linear-regression.html
http://www.mathworks.com/help/stats/generalized-linear-regression.html
http://www.mathworks.com/help/stats/generalized-linear-mixed-effects-models.html
http://www.mathworks.com/help/stats/generalized-linear-mixed-effects-models.html
http://www.federalreserve.gov/bankinforeg/ccar.htm
http://www.federalreserve.gov/bankinforeg/ccar.htm
http://www.bankofengland.co.uk/financialstability/pages/fpc/stresstest.aspx
http://www.bankofengland.co.uk/financialstability/pages/fpc/stresstest.aspx

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

5 European Banking Authority, EU-Wide Stress Testing: http://www.eba.europa.eu/
risk-analysis-and-data/eu-wide-stress-testing.

See Also
fitglm | fitglme

Related Examples
• “Credit Rating by Bagging Decision Trees”

More About
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• creditscorecard

3-69

http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing

4

Corporate Credit Risk Simulations for
Portfolios

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

4 Corporate Credit Risk Simulations for Portfolios

Credit Simulation Using Copulas

In this section...

“Factor Models” on page 4-3
“Supported Simulations” on page 4-3

Predicting the credit losses for a counterparty depends on three main elements:

• Probability of default (PD)
• Exposure at default (EAD), the value of the instrument at some future time
• Loss given default (LGD), which is defined as 1 − Recovery

If these quantities are known at future time t, then the expected loss is PD × EAD ×
LGD. In this case, you can model the expected loss for a single counterparty by using
a binomial distribution. The difficulty arises when you model a portfolio of these
counterparties and you want to simulate them with some default correlation.

To simulate correlated defaults, the copula model associates each counterparty with a
random variable, called a “latent” variable. These latent variables are correlated using
some proxy for their credit worthiness, for example, their stock price. These latent
variables are then mapped to default or nondefault outcomes such that the default occurs
with probability PD.

This figure summarizes the copula simulation approach.

The random variable Ai associated to the ith counterparty falls in the default shaded
region with probability PDi. If the simulated value falls in that region, it is interpreted
as a default. The jth counterparty follows a similar pattern. If the Ai and Aj random
variables are highly correlated, they tend to both have high values (no default), or both
have low values (fall in the default region). Therefore, there is a default correlation.

4-2

 Credit Simulation Using Copulas

Factor Models

For M issuers, M(M − 1)/2 correlation parameters are required. For M = 1000, this is
about half a million correlations. One practical variation of the approach is the one-factor
model, which makes all the latent variables dependent on a single factor. This factor
Z represents the underlying systemic credit quality in the economy. This model also
includes a random idiosyncratic error.

A w Z wi i i i= + -1
2
e

This significantly reduces the input-data requirements, because now you need only the
M sensitivities, that is, the weights w1,…,wM. If Z and εi are standard normal variables,
then Ai is also a standard normal.

An extension of the one-factor model is a multifactor model.

A w Z w Z wi i iK K i i= + + +
1 1

...
e
e

This model has several factors, each one associated with some underlying credit driver.
For example, you can have factors for different regions or countries, or for different
industries. Each latent variable is now a combination of several random variables plus
the idiosyncratic error (epsilon) again.

When the latent variables Ai are normally distributed, there is a Gaussian copula.
A common alternative is to let the latent variables follow a t distribution, which
leads to a t copula. t copulas result in heavier tails than Gaussian copulas. Implied
credit correlations are also larger with t copulas. Switching between these two copula
approaches can provide important information on model risk.

Supported Simulations

The creditCopula object is used to simulate and analyze multifactor credit default
simulations. These simulations assume that you calculated the main inputs to this model
on the your own. The main inputs to this model are:

• PD — Probability of default
• EAD — Exposure at default
• LGD — Loss given default (1 − Recovery)

4-3

4 Corporate Credit Risk Simulations for Portfolios

• Weights — Factor and idiosyncratic weights
• FactorCorrelation — An optional factor correlation matrix for multifactor models

The creditCopula object enables you to simulate defaults using the multifactor copula
and return the results as a distribution of losses on a portfolio and counterparty level.
You can also use the creditCopula object to calculate several risk measures at the
portfolio level and the risk contributions from individual obligors. The outputs of the
creditCopula model and the associated functions are:

• The full simulated distribution of portfolio losses across scenarios and the losses on
each counterparty across scenarios. See creditCopula properties andsimulate.

• Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
• Risk contributions per counterparty (for EL & CVaR). See riskContribution.
• Risk measures and associated confidence bands. See confidenceBands.

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate

Related Examples
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

More About
• creditCopula

4-4

 creditCopula Simulation Workflow

creditCopula Simulation Workflow

This example shows a common workflow for using a creditCopula object for a portfolio
of credit instruments.

For an example of an advanced workflow using the creditCopula object, see “Modeling
Correlated Defaults with Copulas”.

Step 1. Create a creditCopula object with a two-factor model.

Load saved portfolio data. Create a creditCopula object with a two-factor model using
the creditCopula constructor with the values EAD, PD, LGD, and Weights2F.

load CreditPortfolioData.mat;

cc = creditCopula(EAD, PD, LGD,Weights2F,'FactorCorrelation',FactorCorr2F);

disp(cc)

disp(cc.Portfolio(1:10:100,:))

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9500

 PortfolioLosses: []

 CounterpartyLosses: []

 ID EAD PD LGD Weights

 __ ______ __________ ____ __________________________

 1 21.627 0.0050092 0.35 0.35 0 0.65

 11 29.338 0.0050092 0.55 0.35 0 0.65

 21 3.8275 0.0020125 0.25 0.1125 0.3375 0.55

 31 26.286 0.0020125 0.55 0.1125 0.0375 0.85

 41 42.868 0.0050092 0.55 0.25 0 0.75

 51 7.1259 0.00099791 0.25 0 0.25 0.75

 61 10.678 0.0020125 0.35 0 0.15 0.85

 71 2.395 0.00099791 0.55 0 0.15 0.85

 81 26.445 0.060185 0.55 0 0.45 0.55

 91 7.1637 0.11015 0.25 0.35 0 0.65

Step 2. Set the VaRLevel to 99%.

Set the VarLevel property for the creditCopula object to 99% (the default is 95%).

4-5

4 Corporate Credit Risk Simulations for Portfolios

cc.VaRLevel = 0.99;

Step 3. Run a simulation.

Use the simulate function to run a simulation on the creditCopula object for 100,000
scenarios.

 cc = simulate(cc,1e5)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9900

 PortfolioLosses: [1×100000 double]

 CounterpartyLosses: [100×100000 double]

Step 4. Generate a report for the portfolio risk.

Use the portfolioRisk function to obtain a report for risk measures and confidence
intervals for EL, Std, VaR, and CVaR.

[portRisk,RiskConfidenceInterval] = portfolioRisk(cc)

portRisk =

 EL Std VaR CVaR

 ______ ______ ______ _____

 24.768 23.667 102.21 120.9

RiskConfidenceInterval =

 EL Std VaR CVaR

 ________________ ________________ ________________ ________________

 24.621 24.914 23.564 23.771 101.12 103.32 119.78 122.01

4-6

 creditCopula Simulation Workflow

Step 5. Visualize the distribution.

Use the histogram function to display the distribution for EL, VaR, and CVaR.

histogram(cc.PortfolioLosses);

title('Distribution of Portfolio Losses');

Step 6. Generate a risk contributions report.

Use the riskContribution function to display the risk contribution. The risk
contributions, EL and CVaR, are additive. If you sum each of these two metrics over
all the counterparties, you get the values reported for the entire portfolio in the
portfolioRisk table.

4-7

4 Corporate Credit Risk Simulations for Portfolios

rc = riskContribution(cc);

disp(rc(1:10,:))

 ID EL CVaR

 __ __________ _________

 1 0.038907 0.090834

 2 0.068209 0.24527

 3 1.2473 2.6579

 4 0.0025223 0.0065685

 5 0.11905 0.28625

 6 0.12397 0.521

 7 0.83246 1.8713

 8 0.00093656 0

 9 0.91591 4.0861

 10 0.24168 1.8591

Step 7. Simulate the risk exposure with a t copula.

Use the simulate function with optional input arguments for Copula and t. Save the
results to a new creditCopula object (cct).

cct = simulate(cc,1e5,'Copula','t','DegreesOfFreedom',10)

cct =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9900

 PortfolioLosses: [1×100000 double]

 CounterpartyLosses: [100×100000 double]

Step 8. Compare confidence bands for different copulas.

Use the confidenceBands function to compare confidence bands for the two different
copulas.

confidenceBands(cc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)

confidenceBands(cct,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)

4-8

 creditCopula Simulation Workflow

ans =

 NumScenarios Lower Std Upper

 ____________ ______ ______ ______

 10000 23.5 23.773 24.053

 20000 23.64 23.834 24.032

 30000 23.682 23.841 24.003

 40000 23.514 23.65 23.789

 50000 23.569 23.692 23.816

 60000 23.59 23.702 23.816

 70000 23.616 23.72 23.825

 80000 23.623 23.721 23.819

 90000 23.614 23.705 23.797

 1e+05 23.58 23.667 23.755

ans =

 NumScenarios Lower Std Upper

 ____________ ______ ______ ______

 10000 32.413 32.79 33.176

 20000 31.84 32.102 32.368

 30000 31.663 31.876 32.091

 40000 31.623 31.807 31.993

 50000 31.908 32.073 32.241

 60000 31.919 32.07 32.223

 70000 31.934 32.074 32.216

 80000 32.033 32.165 32.298

 90000 32.081 32.205 32.33

 1e+05 32.138 32.256 32.375

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “Modeling Correlated Defaults with Copulas” on page 4-11

4-9

4 Corporate Credit Risk Simulations for Portfolios

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
• creditCopula

4-10

 Modeling Correlated Defaults with Copulas

Modeling Correlated Defaults with Copulas

This example explores how to simulate correlated counterparty defaults using a
multifactor copula model.

Potential losses are estimated for a portfolio of counterparties, given their exposure at
default, default probability, and loss given default information. A creditCopula object
is used to model each obligor's credit worthiness with latent variables. Latent variables
are composed of a series of weighted underlying credit factors, as well as, each obligor's
idiosyncratic credit factor. The latent variables are mapped to an obligor's default
or nondefault state for each scenario based on their probability of default. Portfolio
risk measures, risk contributions at a counterparty level, and simulation convergence
information are supported in the creditCopula object.

This example also explores the sensitivity of the risk measures to the type of copula
(Gaussian copula versus t copula) used for the simulation.

Load and Examine Portfolio Data

The portfolio contains 100 counterparties and their associated credit exposures at default
(EAD), probability of default (PD), and loss given default (LGD). Using a creditCopula
object, you can simulate defaults and losses over some fixed time period (for example, one
year). The EAD, PD, and LGD inputs must be specific to a particular time horizon.

In this example, each counterparty is mapped onto two underlying credit factors with a
set of weights. The Weights2F variable is a NumCounterparties-by-3 matrix, where
each row contains the weights for a single counterparty. The first two columns are the
weights for the two credit factors and the last column is the idiosyncratic weights for
each counterparty. A correlation matrix for the two underlying factors is also provided in
this example (FactorCorr2F).

load CreditPortfolioData.mat

whos EAD PD LGD Weights2F FactorCorr2F

 Name Size Bytes Class Attributes

 EAD 100x1 800 double

 FactorCorr2F 2x2 32 double

 LGD 100x1 800 double

 PD 100x1 800 double

 Weights2F 100x3 2400 double

4-11

4 Corporate Credit Risk Simulations for Portfolios

Initialize the creditCopula object with the portfolio information and the factor
correlation.

rng('default');

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F);

% Change the VaR level to 99%.

cc.VaRLevel = 0.99;

disp(cc)

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9900

 PortfolioLosses: []

 CounterpartyLosses: []

cc.Portfolio(1:5,:)

ans =

 ID EAD PD LGD Weights

 __ ______ _________ ____ ____________________

 1 21.627 0.0050092 0.35 0.35 0 0.65

 2 3.2595 0.060185 0.35 0 0.45 0.55

 3 20.391 0.11015 0.55 0.15 0 0.85

 4 3.7534 0.0020125 0.35 0.25 0 0.75

 5 5.7193 0.060185 0.35 0.35 0 0.65

Simulate the Model and Plot Potential Losses

Simulate the multifactor model using the simulate function. By default, a Gaussian
copula is used. This function internally maps realized latent variables to default states
and computes the corresponding losses. After the simulation, the creditCopula object
populates the PortfolioLosses and CounterpartyLosses properties with the
simulation results.

cc = simulate(cc,1e5);

disp(cc)

4-12

 Modeling Correlated Defaults with Copulas

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9900

 PortfolioLosses: [1×100000 double]

 CounterpartyLosses: [100×100000 double]

The portfolioRisk function returns risk measures for the total portfolio loss
distribution, and optionally, their respective confidence intervals. The value-at-risk
(VaR) and conditional value-at-risk (CVaR) are reported at the level set in the VaRLevel
property for the creditCopula object.

[pr,pr_ci] = portfolioRisk(cc);

fprintf('Portfolio risk measures:\n');

disp(pr)

fprintf('\n\nConfidence intervals for the risk measures:\n');

disp(pr_ci)

Portfolio risk measures:

 EL Std VaR CVaR

 ______ ______ ______ _____

 24.768 23.667 102.21 120.9

Confidence intervals for the risk measures:

 EL Std VaR CVaR

 ________________ ________________ ________________ ________________

 24.621 24.914 23.564 23.771 101.12 103.32 119.78 122.01

Look at the distribution of portfolio losses. The expected loss (EL), VaR, and CVaR are
marked as the vertical lines. The economic capital, given by the difference between the
VaR and the EL, is shown as the shaded area between the EL and the VaR.

histogram(cc.PortfolioLosses)

title('Portfolio Losses');

xlabel('Losses ($)')

ylabel('Frequency')

4-13

4 Corporate Credit Risk Simulations for Portfolios

hold on

% Overlay the risk measures on the histogram.

xlim([0 1.1 * pr.CVaR])

plotline = @(x,color) plot([x x],ylim,'LineWidth',2,'Color',color);

plotline(pr.EL,'b');

plotline(pr.VaR,'r');

cvarline = plotline(pr.CVaR,'m');

% Shade the areas of expected loss and economic capital.

plotband = @(x,color) patch([x fliplr(x)],[0 0 repmat(max(ylim),1,2)],...

 color,'FaceAlpha',0.15);

elband = plotband([0 pr.EL],'blue');

ulband = plotband([pr.EL pr.VaR],'red');

legend([elband,ulband,cvarline],...

 {'Expected Loss','Economic Capital','CVaR (99%)'},...

 'Location','north');

4-14

 Modeling Correlated Defaults with Copulas

Find Concentration Risk for Counterparties

Find the concentration risk in the portfolio using the riskContribution function.
riskContribution returns the contribution of each counterparty to the portfolio EL
and CVaR. These additive contributions sum to the corresponding total portfolio risk
measure.

rc = riskContribution(cc);

% Risk contributions are reported for EL and CVaR.

rc(1:5,:)

4-15

4 Corporate Credit Risk Simulations for Portfolios

ans =

 ID EL CVaR

 __ _________ _________

 1 0.038907 0.090834

 2 0.068209 0.24527

 3 1.2473 2.6579

 4 0.0025223 0.0065685

 5 0.11905 0.28625

Find the riskiest counterparties by their CVaR contributions.

[rc_sorted,idx] = sortrows(rc,'CVaR','descend');

rc_sorted(1:5,:)

ans =

 ID EL CVaR

 __ _______ ______

 89 2.2752 8.6709

 96 1.3172 7.3477

 22 1.5716 7.2763

 16 1.6156 7.2421

 66 0.85578 7.1286

Plot the counterparty exposures and CVaR contributions. The counterparties with the
highest CVaR contributions are plotted in red and orange.

figure;

pointSize = 50;

colorVector = rc_sorted.CVaR;

scatter(cc.Portfolio(idx,:).EAD, rc_sorted.CVaR,...

 pointSize,colorVector,'filled')

colormap('jet')

title('CVaR Contribution vs. Exposure')

xlabel('Exposure')

ylabel('CVaR Contribution')

grid on

4-16

 Modeling Correlated Defaults with Copulas

Investigate Simulation Convergence with Confidence Bands

Use the confidenceBands function to investigate the convergence of the simulation.
By default, the CVaR confidence bands are reported, but confidence bands for all risk
measures are supported using the optional RiskMeasure argument.

cb = confidenceBands(cc);

% The confidence bands are stored in a table.

cb(1:5,:)

ans =

4-17

4 Corporate Credit Risk Simulations for Portfolios

 NumScenarios Lower CVaR Upper

 ____________ ______ ______ ______

 1000 110.94 117.8 124.66

 2000 111.69 116.32 120.95

 3000 114.45 119.56 124.66

 4000 117.41 122.66 127.9

 5000 116.99 121.39 125.79

Plot the confidence bands to see how quickly the estimates converge.

figure;

plot(...

 cb.NumScenarios,...

 cb{:,{'Upper' 'CVaR' 'Lower'}},...

 'LineWidth',2);

title('CVaR: 95% Confidence Interval vs. # of Scenarios');

xlabel('# of Scenarios');

ylabel('CVaR + 95% CI')

legend('Upper Band','CVaR','Lower Band');

grid on

4-18

 Modeling Correlated Defaults with Copulas

Find the necessary number of scenarios to achieve a particular width of the confidence
bands.

width = (cb.Upper - cb.Lower) ./ cb.CVaR;

figure;

plot(cb.NumScenarios,width * 100,'LineWidth',2);

title('CVaR: 95% Confidence Interval Width vs. # of Scenarios');

xlabel('# of Scenarios');

ylabel('Width of CI as %ile of Value')

grid on

% Find point at which the confidence bands are within 1% (two sided) of the

% CVaR.

4-19

4 Corporate Credit Risk Simulations for Portfolios

thresh = 0.02;

scenIdx = find(width <= thresh,1,'first');

scenValue = cb.NumScenarios(scenIdx);

widthValue = width(scenIdx);

hold on

plot(xlim,100 * [widthValue widthValue],...

 [scenValue scenValue], ylim,...

 'LineWidth',2);

title('Scenarios Required for Confidence Interval with 2% Width');

4-20

 Modeling Correlated Defaults with Copulas

Compare Tail Risk for Gaussian and t Copulas

Switching to a t copula increases the default correlation between counterparties. This
results in a fatter tail distribution of portfolio losses, and in higher potential losses in
stressed scenarios.

Rerun the simulation using a t copula and compute the new portfolio risk measures. The
default degrees of freedom (dof) for the t copula is five.

cc_t = simulate(cc,1e5,'Copula','t');

pr_t = portfolioRisk(cc_t);

See how the portfolio risk changes with the t copula.

fprintf('Portfolio risk with Gaussian copula:\n');

disp(pr)

fprintf('\n\nPortfolio risk with t copula (dof = 5):\n');

disp(pr_t)

Portfolio risk with Gaussian copula:

 EL Std VaR CVaR

 ______ ______ ______ _____

 24.768 23.667 102.21 120.9

Portfolio risk with t copula (dof = 5):

 EL Std VaR CVaR

 ______ ______ ______ ______

 24.688 38.673 183.74 249.31

Compare the tail losses of each model.

% Plot the Gaussian copula tail.

figure;

subplot(2,1,1)

p1 = histogram(cc.PortfolioLosses);

hold on

plotline(pr.VaR,[1 0.5 0.5])

plotline(pr.CVaR,[1 0 0])

xlim([0.8 * pr.VaR 1.2 * pr_t.CVaR]);

ylim([0 1000]);

4-21

4 Corporate Credit Risk Simulations for Portfolios

grid on

legend('Loss Distribution','VaR','CVaR')

title('Portfolio Losses with Gaussian Copula');

xlabel('Losses ($)');

ylabel('Frequency');

% Plot the t copula tail.

subplot(2,1,2)

p2 = histogram(cc_t.PortfolioLosses);

hold on

plotline(pr_t.VaR,[1 0.5 0.5])

plotline(pr_t.CVaR,[1 0 0])

xlim([0.8 * pr.VaR 1.2 * pr_t.CVaR]);

ylim([0 1000]);

grid on

legend('Loss Distribution','VaR','CVaR');

title('Portfolio Losses with t Copula (dof = 5)');

xlabel('Losses ($)');

ylabel('Frequency');

4-22

 Modeling Correlated Defaults with Copulas

The tail risk measures VaR and CVaR are significantly higher using the t copula with
five degrees of freedom. The default correlations are higher with t copulas, therefore
there are more scenarios where multiple counterparties default. The number of degrees
of freedom plays a significant role. For very high degrees of freedom, the results with
the t copula are similar to the results with the Gaussian copula. Five is a very low
number of degrees of freedom and, consequentially, the results show striking differences.
Furthermore, these results highlight that the potential for extreme losses are very
sensitive to the choice of copula and the number of degrees of freedom.

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate

4-23

4 Corporate Credit Risk Simulations for Portfolios

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
• creditCopula

4-24

5

Functions — Alphabetical List

5 Functions — Alphabetical List

Binning Explorer
Bin data and export into a creditscorecard object

Description
The Binning Explorer app enables you to manage binning categories for a
creditscorecard object. After creating a table of data in your MATLAB workspace, or
after using creditscorecard to create a creditscorecard object, use the Binning
Explorer to:

• Select an automatic binning algorithm.
• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

Open the Binning Explorer App

• MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app
icon.

• MATLAB command prompt: Enter binningExplorer.

Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Binning Explorer Case Study Example” on page 3-26
• “Case Study for a Credit Scorecard Analysis”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-44

More About
• “Overview of Binning Explorer” on page 3-2

5-2

 Binning Explorer

• “Credit Scorecard Modeling Workflow”
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)

See Also

Functions
creditscorecard

Introduced in R2016b

5-3

http://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-120558.html

5 Functions — Alphabetical List

creditCopula
Simulate and analyze multifactor credit default model

Description

The creditCopula class simulates portfolio losses due to counterparty defaults using
a multifactor model. The inputs to the model describe the credit-sensitive portfolio of
exposures:

• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default (1 − Recovery)
• Weights — Factor and idiosyncratic model weights

After the creditCopula object is created using the creditCopula function, use
the simulate function to simulate credit defaults using the multifactor model. The
results are stored in the form of a distribution of losses at the portfolio and counterparty
level. Several risk measures at the portfolio level are calculated, as well as the risk
contributions from individual obligors. The model calculates:

• The full simulated distribution of portfolio losses across scenarios
• The losses on each counterparty across scenarios
• Several risk measures (VaR, CVaR, EL, Std) with confidence intervals
• Risk contributions per counterparty (for EL and CVaR)

Create Object

To create a creditCopula object, use the creditCopula function.

Properties

Portfolio — Details of credit portfolio
table

5-4

 creditCopula

Details of credit portfolio, specified as a MATLAB table that contains all the portfolio
data that was passed as input into the creditCopula constructor.

The Portfolio table has a column for each of the constructor inputs (EAD, PD, LGD,
Weights, and ID). Each row of the table represents one counterparty.

For example:

 ID EAD PD LGD Weights

 __ ______ _________ _______ _________

 1 122.43 0.064853 0.68024 0.3 0.7

 2 70.386 0.073957 0.59256 0.3 0.7

 3 79.281 0.066235 0.52383 0.3 0.7

 4 113.42 0.01466 0.43977 0.3 0.7

 5 100.46 0.0042036 0.41838 0.3 0.7

Data Types: table

FactorCorrelation — Correlation matrix for credit factors
matrix

Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors
matrix. Specify the correlation matrix using the optional name-value pair argument
FactorCorrelation with the creditCopula constructor.

Data Types: double

VaRLevel — Value at Risk Level
numeric between 0 and 1

Value at risk level used when reporting VaR and CVaR, specified using an optional
name-value pair argument 'VaRLevel' with the creditCopula constructor.

Data Types: double

PortfolioLosses — Total portfolio losses
vector

Total portfolio losses, specified as a NumScenarios-by-1 vector. The PortfolioLosses
property is empty after construction with the creditCopula constructor. After the
simulate function is invoked, the PortfolioLosses property is populated with the
vector of portfolio losses.
Data Types: double

5-5

5 Functions — Alphabetical List

CounterpartyLosses — Individual counterparty losses across all scenarios
sparse matrix

Individual counterparty losses across all scenarios, specified as a NumCounterparties-
by-NumScenarios sparse matrix of counterparty losses. The CounterpartyLosses
property is empty after construction with the creditCopula constructor. After the
simulate function is invoked, it is populated with the losses for each counterparty over
each scenario. This matrix can become large, and for this reason it is stored as a sparse
matrix.
Data Types: double

Object Functions
creditCopula Create creditCopula object
simulate Simulate credit defaults using a

creditCopula object
portfolioRisk Generate portfolio-level risk measurements
riskContribution Generate risk contributions for each

counterparty in portfolio
confidenceBands Confidence interval bands

Examples

Create a creditCopula Object and Simulate Credit Portfolio Losses

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

5-6

 creditCopula

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9500

 PortfolioLosses: []

 CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Simulate 100,000 scenarios and view the portfolio risk measures.

 cc = simulate(cc,1e5)

 portRisk = portfolioRisk(cc)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9900

 PortfolioLosses: [1×100000 double]

 CounterpartyLosses: [100×100000 double]

portRisk =

 EL Std VaR CVaR

 ______ ______ ______ _____

 24.768 23.667 102.21 120.9

View a histogram of the portfolio losses.

histogram(cc.PortfolioLosses);

title('Distribution of Portfolio Losses');

5-7

5 Functions — Alphabetical List

For further analysis, use the simulate, portfolioRisk, and riskContribution
functions with the creditCopula object.

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

5-8

 creditCopula

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate | table

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

Introduced in R2016b

5-9

5 Functions — Alphabetical List

creditCopula

Create creditCopula object

Syntax

cc = creditCopula(EAD,PD,LGD,Weights)

cc = creditCopula(___ ,Name,Value)

Description

cc = creditCopula(EAD,PD,LGD,Weights) creates a creditCopula object. For
more information on using a creditCopula object, see creditCopula.

cc = creditCopula(___ ,Name,Value) adds optional name-value pair arguments.
For more information on using a creditCopula object, see creditCopula.

Examples

Create a creditCopula Object and Simulate Credit Portfolio Losses

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

5-10

 creditCopula

 VaRLevel: 0.9500

 PortfolioLosses: []

 CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Simulate 100,000 scenarios and view the portfolio risk measures.

 cc = simulate(cc,1e5)

 portRisk = portfolioRisk(cc)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9900

 PortfolioLosses: [1×100000 double]

 CounterpartyLosses: [100×100000 double]

portRisk =

 EL Std VaR CVaR

 ______ ______ ______ _____

 24.768 23.667 102.21 120.9

View a histogram of the portfolio losses.

histogram(cc.PortfolioLosses);

title('Distribution of Portfolio Losses');

5-11

5 Functions — Alphabetical List

For further analysis, use the simulate, portfolioRisk, and riskContribution
functions with the creditCopula object.

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

EAD — Exposure at default
numeric vector

5-12

 creditCopula

Exposure at default, specified as a NumCounterparties-by-1 vector of credit exposures.

Note: The creditCopula model simulates defaults and losses over some fixed
time period (for example, one year). The counterparty exposures (EAD) and default
probabilities (PD) must both be specific to a particular time.

Data Types: double

PD — Probability of default
numeric vector with elements between 0 and 1

Probability of default, specified as a NumCounterparties-by-1 numeric vector with
elements between 0 and 1, representing the default probabilities for the counterparties.

Note: The creditCopula model simulates defaults and losses over some fixed
time period (for example, one year). The counterparty exposures (EAD) and default
probabilities (PD) must both be specific to a particular time.

Data Types: double

LGD — Loss given default
numeric vector with elements between 0 and 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with
elements between 0 and 1, representing the fraction of exposure that is lost when a
counterparty defaults. LGD is defined as (1 − Recovery). For example, a LGD of 0.6 implies
a 40% recovery rate in the event of a default.
Data Types: double

Weights — Factor and idiosyncratic weights
array of factor and idiosyncratic weights

Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors
+ 1) array. Each row contains the factor weights for a particular counterparty.
Each column contains the weights for an underlying risk factor. The last column in
Weights contains the idiosyncratic risk weight for each counterparty. The idiosyncratic
weight represents the company-specific credit risk. The total of the weights for each
counterparty (that is, each row) must sum to 1.

5-13

5 Functions — Alphabetical List

For example, if a counterparty’s creditworthiness was composed of 60% US, 20%
European, and 20% idiosyncratic, then the Weights vector would be [0.6 0.2 0.2].

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: cc = creditCopula(EAD,PD,LGD,Weights,'VaRLevel',0.99)

'ID' — User-defined IDs for counterparties
ID is numeric vector (default) | vector

User-defined IDs for counterparties, specified as a NumCounterparties-by-1 vector
of IDs for each counterparty. ID is used to identify exposures in the Portfolio table
and the risk contribution table. ID must be a numeric, a string array, or a cell array of
character vectors. If unspecified, ID defaults to a numeric vector.

Data Types: double | string | cell

'VaRLevel' — Value at risk level
0.95 (default) | decimal

Value at risk level (used for reporting VaR and CVaR) specified as a decimal.

Data Types: double

'FactorCorrelation' — Factor correlation matrix
identity matrix (default) | correlation matrix

Factor correlation matrix, specified as a NumFactors-by-NumFactors matrix that
defines the correlation between the risk factors. If not specified, the factor correlation
matrix defaults to an identity matrix, meaning that factors are not correlated.
Data Types: double

5-14

 creditCopula

Output Arguments

cc — creditCopula object
object

creditCopula object contains the provided portfolio data, that is stored in the
Portfolio property.

The Portfolio property is a table that has a column for each of the constructor inputs
(EAD, PD, LGD, Weights, and ID). Each row of the Portfolio table represents one
counterparty.

The creditCopula object has the following properties:

• Portfolio:

A table with the following variables:

• ID — An ID to identify each counterparty
• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default
• Weights — Factor and idiosyncratic weights for counterparties

• FactorCorrelation:

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the
correlation between the risk factors.

• VaRLevel:

The value-at-risk level, used when reporting VaR and CVaR.
• PortfolioLosses

Portfolio losses, a NumScenarios-by-1 vector of portfolio losses. This property is
empty until the simulate function is used.

• CounterpartyLosses

Counterparty losses, a NumCounterparties-by-NumScenarios sparse matrix of
individual counterparty losses across the scenarios. This property is empty until the
simulate function is used.

5-15

5 Functions — Alphabetical List

For more information on creditCopula objects, see creditCopula.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
• creditCopula

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | portfolioRisk | riskContribution | simulate | table

Introduced in R2016b

5-16

 confidenceBands

confidenceBands

Confidence interval bands

Syntax

cbTable = confidenceBands(cc)

cbTable = confidenceBands(cc,Name,Value)

Description

cbTable = confidenceBands(cc) returns a table of the requested risk measure
and its associated confidence bands. confidenceBands is used to investigate how the
values of a risk measure and its associated confidence interval converge as the number
of scenarios increases. The simulate function must be run before confidenceBands is
used. For more information on using a creditCopula object, see creditCopula.

cbTable = confidenceBands(cc,Name,Value) adds optional name-value pair
arguments. The simulate function must be run before confidenceBands is used. For
more information on using a creditCopula object, see creditCopula.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk Measure for a
creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

5-17

5 Functions — Alphabetical List

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9500

 PortfolioLosses: []

 CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function before running confidenceBands. Use confidenceBands
with the creditCopula object to generate the cbTable.

cc = simulate(cc,1e5);

cbTable = confidenceBands(cc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9);

cbTable(1:10,:)

ans =

 NumScenarios Lower Std Upper

 ____________ ______ ______ ______

 1000 23.008 23.852 24.766

 2000 22.922 23.517 24.146

 3000 23.159 23.65 24.164

 4000 23.762 24.198 24.652

 5000 23.646 24.035 24.437

 6000 23.788 24.145 24.513

 7000 23.709 24.038 24.377

 8000 23.496 23.801 24.115

 9000 23.43 23.717 24.012

 10000 23.5 23.773 24.053

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

5-18

 confidenceBands

Input Arguments

cc — creditCopula object
object

creditCopula object, specified using the updated creditCopula object obtained from
running the simulate function, which must be run before confidenceBands is used.

For more information on creditCopula objects, see creditCopula.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: cbTable =
confidenceBands(cc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.92,'NumPoints',500)

'RiskMeasure' — Risk measure to investigate
CVaR (default) | character vector with values 'EL', 'Std', 'VaR', or 'CVaR'

Risk measure to investigate, specified as character vector with possible values:

• 'EL' — Expected loss, the mean of portfolio losses
• 'Std' — Standard deviation of the losses
• 'VaR' — Value at risk at the threshold specified by the VaRLevel property of the

creditCopula object
• 'CVaR' — Conditional VaR at the threshold specified by the VaRLevel property of

the creditCopula object

Data Types: char

'ConfidenceIntervalLevel' — Confidence interval level
0.95 (default) | decimal

Confidence interval level, specified as a decimal. For example, if you specify 0.95, a 95%
confidence interval is reported in the output table (cbTable).

Data Types: double

5-19

5 Functions — Alphabetical List

'NumPoints' — Number of scenario samples to report
100 (default) | nonnegative integer

Number of scenario samples to report, specified as a nonnegative integer. The default is
100, meaning confidence bands are reported at 100 evenly spaced points of increasing
sample size ranging from 0 to the total number of simulated scenarios.

Note: NumPoints must be a numeric scalar greater than 1, and is typically much
smaller than total number of scenarios simulated. confidenceBands should be used
to obtain a qualitative idea of how fast a risk measure and its confidence interval are
converging. Specifying a large value for NumPoints is not recommended and could cause
performance issues with confidenceBands.

Data Types: double

Output Arguments
cbTable — Requested risk measure and associated confidence bands
table

Requested risk measure and associated confidence bands at each of the NumPoints
scenario sample sizes, returned as a table containing the following columns:

• NumScenarios — Number of scenarios at the sample point
• Lower — Lower confidence band
• RiskMeasure — Requested risk measure where the column takes its name from

whatever risk measure is requested with the optional input RiskMeasure
• Upper — Upper confidence band

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

5-20

 confidenceBands

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
creditCopula | portfolioRisk | riskContribution | simulate | table

Introduced in R2016b

5-21

5 Functions — Alphabetical List

portfolioRisk
Generate portfolio-level risk measurements

Syntax

[riskMeasures,confidenceIntervals] = portfolioRisk(cc)

[riskMeasures,confidenceIntervals] = portfolioRisk(cc,Name,Value)

Description

[riskMeasures,confidenceIntervals] = portfolioRisk(cc) returns tables of
risk measurements for the portfolio losses. The simulate function must be run before
portfolioRisk is used. For more information on using a creditCopula object, see
creditCopula.

[riskMeasures,confidenceIntervals] = portfolioRisk(cc,Name,Value)

adds an optional name-value pair argument for ConfidenceIntervalLevel. The
simulate function must be run before portfolioRisk is used.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

5-22

 portfolioRisk

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9500

 PortfolioLosses: []

 CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function before running portfolioRisk. Then use
portfolioRisk with the creditCopula object to generate the riskMeasure and
ConfidenceIntervals tables.

cc = simulate(cc,1e5);

[riskMeasure,confidenceIntervals] = portfolioRisk(cc,'ConfidenceIntervalLevel',0.9)

riskMeasure =

 EL Std VaR CVaR

 ______ ______ ______ _____

 24.768 23.667 102.21 120.9

confidenceIntervals =

 EL Std VaR CVaR

 ________________ _______________ ________________ ________________

 24.645 24.891 23.58 23.755 101.29 103.14 119.96 121.83

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

cc — creditCopula object
object

5-23

5 Functions — Alphabetical List

creditCopula object, specified as an updated creditCopula object obtained by
running the simulate function, which must be run before portfolioRisk is used.

For more information on creditCopula objects, see creditCopula.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [riskMeasure,confidenceIntervals] =
portfolioRisk(cc,'ConfidenceIntervalLevel',0.92)

'ConfidenceIntervalLevel' — Confidence interval level
0.95 (default) | decimal

Confidence interval level, specified as a decimal. For example, if you specify 0.95, a 95%
confidence interval is reported in the output table (riskMeasures).

Data Types: double

Output Arguments

riskMeasures — Risk measures
table

Risk measures, returned as a table containing the following columns:

• EL — Expected loss, the mean of portfolio losses
• Std — Standard deviation of the losses
• VaR — Value at risk at the threshold specified by the VaRLevel property of the

creditCopula object
• CVaR — Conditional VaR at the threshold specified by the VaRLevel property of the

creditCopula object

confidenceIntervals — Confidence intervals
table

5-24

 portfolioRisk

Confidence intervals, returned as a table of confidence intervals corresponding to the
portfolio risk measures reported in the riskMeasures table. Confidence intervals are
reported at the level specified by the ConfidenceIntervalLevel parameter.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditCopula | riskContribution | simulate | table

Introduced in R2016b

5-25

5 Functions — Alphabetical List

riskContribution
Generate risk contributions for each counterparty in portfolio

Syntax

riskContributions = riskContribution(cc)

Description

riskContributions = riskContribution(cc) returns a table of risk contributions
for each counterparty in the portfolio. The riskContributions table allocates the
full portfolio risk measures to each counterparty, such that the counterparty risk
contributions sum to the portfolio risks reported by portfolioRisk.

For more information on using a creditCopula object, see creditCopula.

Examples

Determine the Risk Contribution for Each Counterparty for a creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9500

5-26

 riskContribution

 PortfolioLosses: []

 CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function before running riskContribution. Then
use riskContribution with the creditCopula object to generate the
riskContributions.

cc = simulate(cc,1e5);

riskContributions = riskContribution(cc);

riskContributions(1:10,:)

ans =

 ID EL CVaR

 __ __________ _________

 1 0.038907 0.090834

 2 0.068209 0.24527

 3 1.2473 2.6579

 4 0.0025223 0.0065685

 5 0.11905 0.28625

 6 0.12397 0.521

 7 0.83246 1.8713

 8 0.00093656 0

 9 0.91591 4.0861

 10 0.24168 1.8591

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

cc — creditCopula object
object

5-27

5 Functions — Alphabetical List

creditCopula object, specified as an updated creditCopula object obtained by
running the simulate function, which must be run before riskContribution is used.

For more information on creditCopula objects, see creditCopula.

Output Arguments

riskContributions — Risk contributions
table

Risk contributions, returned as a table containing the following risk contributions for
each counterparty:

• EL — The expected loss for the particular counterparty over the scenarios
• CVaR — The conditional value at risk for the particular counterparty over the

scenarios

The riskContributions table allocates the full portfolio risk measures to each
counterparty, such that the counterparty risk contributions sum to the portfolio risks
reported by portfolioRisk.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

Glasserman, P. “Measuring Marginal Risk Contributions in Credit Portfolios.” Journal of
Computational Finance. Vol. 9, No. 2, Winter 2005/2006.

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

5-28

 riskContribution

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Kalkbrener, M., Lotter, H., and Overbeck, L. “Sensible and Efficient Capital Allocation
for Credit Portfolios.” Risk. 17, 2004, pp. S19–S24.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditCopula | portfolioRisk | simulate | table

Introduced in R2016b

5-29

5 Functions — Alphabetical List

simulate
Simulate credit defaults using a creditCopula object

Syntax

cc = simulate(cc,NumScenarios)

cc = simulate(___ ,Name,Value)

Description

cc = simulate(cc,NumScenarios) performs the full simulation of credit scenarios
and computes defaults and losses for the portfolio defined in the creditCopula object.

For more information on using a creditCopula object, see creditCopula.

cc = simulate(___ ,Name,Value) adds optional name-value pair arguments for
(Copula, DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

5-30

 simulate

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9500

 PortfolioLosses: []

 CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function with the creditCopula object. After using simulate,
you can then use the portfolioRisk, riskContribution, and confidenceBands
functions with the updated creditCopula object.

cc = simulate(cc,1e5,'Copula','t','DegreesOfFreedom',10)

cc =

 creditCopula with properties:

 Portfolio: [100×5 table]

 FactorCorrelation: [2×2 double]

 VaRLevel: 0.9900

 PortfolioLosses: [1×100000 double]

 CounterpartyLosses: [100×100000 double]

For instance, you can use riskContribution with the creditCopula object to
generate the riskContributions.

riskContributions = riskContribution(cc);

riskContributions(1:10,:)

ans =

 ID EL CVaR

 __ __________ ________

 1 0.038756 0.62827

 2 0.068083 0.37989

 3 1.24 3.7233

 4 0.0027588 0.034156

 5 0.11941 0.5625

5-31

5 Functions — Alphabetical List

 6 0.12628 0.74279

 7 0.83595 2.6062

 8 0.00075817 0.018731

 9 0.93719 5.4739

 10 0.25739 4.1895

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

cc — creditCopula object
object

creditCopula object, obtained by running the creditCopula constructor.

For more information on a creditCopula object, see creditCopula.

NumScenarios — Number of scenarios to simulate
nonnegative integer

Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are
processed in blocks to conserve machine resources.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: obj=
simulate(obj,NumScenarios,'Copula','t','DegreesOfFreedom',5)

'Copula' — Type of copula
'Gaussian' (default) | character vector with values 'Gaussian' or 't'

5-32

 simulate

Type of copula, specified as a character vector with a value of:

• 'Gaussian' — A Gaussian copula
• 't' — A t copula with degrees of freedom specified using DegreesOfFreedom.

Data Types: char

'DegreesOfFreedom' — Degrees of freedom for t copula
5 degrees of freedom (default) | nonnegative numeric value

Degrees of freedom for a t copula, specified as a nonnegative numeric value. If Copula is
set to 'Gaussian', the DegreesOfFreedom parameter is ignored.

Data Types: double

'BlockSize' — Number of scenarios to process in each iteration
1e5/Number of counterparties (default) | nonnegative numeric value

Number of scenarios to process in each iteration, specified as a nonnegative numeric
value.
Data Types: double

Output Arguments

cc — Updated creditCopula object
object

Updated creditCopula object. The object is populated with the simulated
PortfolioLosses and CounterpartyLosses.

For more information on a creditCopula object, see creditCopula.

Note: In the simulate function, the Weights are transformed to ensure that the latent
variables have a mean of 0 and a variance of 1.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

5-33

5 Functions — Alphabetical List

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution | table

Introduced in R2016b

5-34

 varbacktest

varbacktest
Suite of value-at-risk (VaR) back tests

Description
The general workflow is:

1 Load or generate the data for the VaR backtesting analysis.
2 Create a varbacktest object using the varbacktest constructor.
3 Use the summary function to generate a summary report for the given data on the

number of observations and the number of failures.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• tl — Traffic light test
• bin — Binomial test
• pof — Proportion of failures
• tuff — Time until first failure
• cc — Conditional coverage mixed
• cci — Conditional coverage independence
• tbf — Time between failures mixed
• tbfi — Time between failures independence

For more information, see “VaR Backtesting Workflow” on page 2-8.

Create Object
To create a varbacktest (vbt) object, use the varbacktest function.

Properties
PortfolioData — Portfolio data for VaR backtesting analysis
numeric array

5-35

5 Functions — Alphabetical List

Portfolio data for the VaR backtesting analysis, specified as a NumRows-by-1 numeric
array containing a copy of the portfolio data.
Data Types: double

VaRData — VaR data for VaR backtesting analysis
numeric array

VaR data for the VaR backtesting analysis, specified as a NumRows-by-NumVaRs numeric
array containing a copy of the VaR data.
Data Types: double

PortfolioID — Portfolio identifier
string

Portfolio identifier, specified as a string.
Data Types: string

VaRID — VaR identifier
string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the
corresponding columns in VaRData.

Data Types: string

VaRLevel — VaR level
numeric array with values between 0 and 1

VaR level, specified as a 1-by-NumVaRs numeric array containing the VaR levels for the
corresponding columns in VaRData.

Data Types: double

varbacktest Property Set or Modify Property
from Command Line Using
varbacktest Function

Modify Property Using Dot
Notation

PortfolioData Yes No
VaRData Yes No
PortfolioID Yes Yes
VaRID Yes Yes

5-36

 varbacktest

varbacktest Property Set or Modify Property
from Command Line Using
varbacktest Function

Modify Property Using Dot
Notation

VaRLevel Yes Yes

Object Functions
varbacktest Create varbacktest object using portfolio

outcomes data and corresponding value-at-
risk (VaR) data

tl Traffic light test for value-at-risk (VaR)
backtesting

bin Binomial test for value-at-risk (VaR)
backtesting

pof Proportion of failures test for value-at-risk
(VaR) backtesting

tuff Time until first failure test for value-at-risk
(VaR) backtesting

cc Conditional coverage mixed test for value-
at-risk (VaR) backtesting

cci Conditional coverage independence test for
value-at-risk (VaR) backtesting

tbf Time between failures mixed test for value-
at-risk (VaR) backtesting

tbfi Time between failures independence test for
value-at-risk (VaR) backtesting

summary Report on varbacktest data
runtests Run all tests in varbacktest

Examples

Create varbacktest Object and Run VaR Backtests for Single VaR at 95%

The varbacktest constructor takes in portfolio outcomes data and corresponding value-
at-risk (VaR) data and returns a varbacktest object.

Create a varbacktest object.

 load VaRBacktestData

5-37

5 Functions — Alphabetical List

 vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property) and all
combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID,
and VaRLevel properties).

Run the tests using the vbt object.

 runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ _____ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "Portfolio" "VaR" 0.95 green accept accept accept accept accept reject reject

Change the PortfolfioID and VaRID properties using dot notation. For more
information on creating a varbacktest object, see varbacktest.

vbt.PortfolioID = 'S&P'

vbt.VaRID = 'Normal at 95%'

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

5-38

 varbacktest

 PortfolioID: "S&P"

 VaRID: "VaR"

 VaRLevel: 0.9500

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "S&P"

 VaRID: "Normal at 95%"

 VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

 runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ _______________ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal at 95%" 0.95 green accept accept accept accept accept reject reject

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

References

Basel Committee on Banking Supervision, Supervisory Framework for the Use of
'Backtesting' in Conjunction with the Internal Models Approach to Market Risk Capital
Requirements. January, 1996, http://www.bis.org/publ/bcbs22.htm.

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

Cogneau, Ph. “Backtesting Value-at-Risk: How Good is the Model?" Intelligent Risk,
PRMIA, July, 2015.

5-39

http://www.bis.org/publ/bcbs22.htm

5 Functions — Alphabetical List

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

Jorion, Ph. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton
University Press, 2005.

Nieppola, O. “Backtesting Value-at-Risk Models.” Master's Thesis, Helsinki School of
Economics, 2009.

See Also
varbacktest

More About
• “Overview of VaR Backtesting” on page 2-2

Introduced in R2016b

5-40

 varbacktest

varbacktest
Create varbacktest object using portfolio outcomes data and corresponding value-at-
risk (VaR) data

Syntax

vbt = varbacktest(PortfolioData,VaRData)

vbt = varbacktest(___ ,Name,Value)

Description

vbt = varbacktest(PortfolioData,VaRData) creates a varbacktest object
using portfolio outcomes data and corresponding value-at-risk (VaR) data. For more
information on using a vbt object, see varbacktest.

vbt = varbacktest(___ ,Name,Value) adds optional name-value pair arguments.
For more information on using a vbt object, see varbacktest.

Examples

Run VaR Backtests for a Single VaR at 95%

Create a varbacktest object.

 load VaRBacktestData

 vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

5-41

5 Functions — Alphabetical List

 VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property) and all
combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID,
and VaRLevel properties).

Run the tests using the varbacktest object.

 runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ _____ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "Portfolio" "VaR" 0.95 green accept accept accept accept accept reject reject

Change the PortfolfioID and VaRID properties using dot notation. For more
information on a varbacktest object, see varbacktest.

vbt.PortfolioID = 'S&P'

vbt.VaRID = 'Normal at 95%'

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "S&P"

 VaRID: "VaR"

 VaRLevel: 0.9500

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

5-42

 varbacktest

 PortfolioID: "S&P"

 VaRID: "Normal at 95%"

 VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

 runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ _______________ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal at 95%" 0.95 green accept accept accept accept accept reject reject

Run VaR Backtests for Multiple VaRs at Different Confidence Levels

Create a varbacktest object that has multiple VaR identifiers with different confidence
levels.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

Run the summary report for the varbacktest object.

 summary(vbt)

ans =

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing

 ___________ ______________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "Equity" "Normal95" 0.95 0.94535 1043 57 52.15 1.093 58 0

 "Equity" "Normal99" 0.99 0.9837 1043 17 10.43 1.6299 173 0

 "Equity" "Historical95" 0.95 0.94343 1043 59 52.15 1.1314 55 0

 "Equity" "Historical99" 0.99 0.98849 1043 12 10.43 1.1505 173 0

 "Equity" "EWMA95" 0.95 0.94343 1043 59 52.15 1.1314 28 0

5-43

5 Functions — Alphabetical List

 "Equity" "EWMA99" 0.99 0.97891 1043 22 10.43 2.1093 143 0

Run all tests using the varbacktest object.

 runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ ______________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "Equity" "Normal95" 0.95 green accept accept accept accept accept reject reject

 "Equity" "Normal99" 0.99 yellow reject accept accept accept accept accept accept

 "Equity" "Historical95" 0.95 green accept accept accept accept accept reject reject

 "Equity" "Historical99" 0.99 green accept accept accept accept accept accept accept

 "Equity" "EWMA95" 0.95 green accept accept accept accept accept accept accept

 "Equity" "EWMA99" 0.99 yellow reject reject accept reject accept reject accept

Run the traffic light test (tl) using the varbacktest object.

 tl(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures

 ___________ ______________ ________ ______ ___________ _________ ________ ____________ ________

 "Equity" "Normal95" 0.95 green 0.77913 0.26396 0 1043 57

 "Equity" "Normal99" 0.99 yellow 0.97991 0.03686 0.26582 1043 17

 "Equity" "Historical95" 0.95 green 0.85155 0.18232 0 1043 59

 "Equity" "Historical99" 0.99 green 0.74996 0.35269 0 1043 12

 "Equity" "EWMA95" 0.95 green 0.85155 0.18232 0 1043 59

 "Equity" "EWMA99" 0.99 yellow 0.99952 0.0011122 0.43511 1043 22

Run VaR Backtests for Multiple Portfolios and Concatenate Results

Use the varbacktest constructor with table inputs and name-value pair arguments
to create two varbacktest objects and run the concatenated summary report. The
varbacktest constructor uses the variable names in the table inputs as PortfolioID
and VaRID.

5-44

 varbacktest

load VaRBacktestData

vbtE = varbacktest(DataTable(:,2),DataTable(:,3:4),'VaRLevel',[0.95 0.99]);

vbtD = varbacktest(DataTable(:,5),DataTable(:,6:7),'VaRLevel',[0.95 0.99]);

[summary(vbtE); summary(vbtD)]

ans =

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing

 _____________ __________________ ________ _____________ ____________ ________ ________ _______ ____________ _______

 "Equity" "VaREquity95" 0.95 0.94343 1043 59 52.15 1.1314 28 0

 "Equity" "VaREquity99" 0.99 0.97891 1043 22 10.43 2.1093 143 0

 "Derivatives" "VaRDerivatives95" 0.95 0.95014 1043 52 52.15 0.99712 9 0

 "Derivatives" "VaRDerivatives99" 0.99 0.97028 1043 31 10.43 2.9722 28 0

Run all the tests and concatenate the results.

[runtests(vbtE); runtests(vbtD)]

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 _____________ __________________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "Equity" "VaREquity95" 0.95 green accept accept accept accept accept accept accept

 "Equity" "VaREquity99" 0.99 yellow reject reject accept reject accept reject accept

 "Derivatives" "VaRDerivatives95" 0.95 green accept accept accept accept accept reject reject

 "Derivatives" "VaRDerivatives99" 0.99 red reject reject accept reject accept reject reject

Run the pof test and concatenate the results.

 [pof(vbtE); pof(vbtD)]

ans =

 PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Failures TestLevel

 _____________ __________________ ________ ______ __________ __________ ____________ ________ _________

 "Equity" "VaREquity95" 0.95 accept 0.91023 0.34005 1043 59 0.95

 "Equity" "VaREquity99" 0.99 reject 9.8298 0.0017171 1043 22 0.95

5-45

5 Functions — Alphabetical List

 "Derivatives" "VaRDerivatives95" 0.95 accept 0.00045457 0.98299 1043 52 0.95

 "Derivatives" "VaRDerivatives99" 0.99 reject 26.809 2.2457e-07 1043 31 0.95

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table

Portfolio outcomes data, specified as a NumRows-by-1 numeric array or NumRows-by-1
table with a numeric column containing portfolio outcomes data. PortfolioData can
be expressed as returns, or alternatively as profits and losses. There are no validations
in the tool regarding the units of portfolio or VaR data. It is the user's responsibility to
provide the portfolio and VaR data in the same units.

Missing values (NaNs in the PortfolioData) are discarded before applying the tests.
Therefore, a different number of observations is reported (NumObs) for series with
different number of missing values. The reported number of observations (NumObs)
equals the original number of rows in the data (NumRows) minus the number of periods
with missing values.
Data Types: double | table

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric
columns

Value-at-risk (VaR) data, specified using a NumRows-by-NumVaRs numeric array, or
NumRows-by-NumVaRs table with numeric columns.

VaRData data must be in the same units PortfolioData. There are no validations in
the tool regarding the units of portfolio or VaR data. These may be expressed as returns,
or alternatively as profits and losses. It is the user's responsibility to provide the portfolio
and VaR data in the same units.

If VaRData has more than one column (NumVaRs> 1), the PortfolioData is tested
against each column in VaRData. By default, a 0.95 VaR confidence level is used for all
columns in VaRData. (Use VaRLevel to specify different VaR confidence levels.)

5-46

 varbacktest

The convention is that VaR is a positive amount. Therefore, a failure is recorded when
the loss (the negative of the portfolio data) exceeds the VaR, that is, when

 -PortfolioData > VaRData

For example, a VaR of one million (positive) is violated whenever there is an outcome
worse than a one-million loss (the negative of the portfolio outcome, or loss, is larger than
the VaR).

Negative VaRData values are allowed, however negative VaR values indicate a highly
profitable portfolio that cannot lose money at the given VaR confidence level. That is, the
worst-case scenario at the given confidence level is still a profit.

Missing values (NaNs in VaRData) are discarded before applying the tests. Therefore, a
different number of observations is reported (NumObs) for series with different number
of missing values. The reported number of observations (NumObs) equals the original
number of rows in the data (NumRows) minus the number of periods with missing values.

Example:
Data Types: double | table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: vbt =
varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100','VaRID','TotalVaR','VaRLevel',.99)

'PortfolioID' — User-defined ID for PortfolioData input
character vector | string

User-defined ID for PortfolioData input, specified as a character vector or string.

If PortfolioData is a numeric array, the default value for PortfolioID is
'Portfolio'. If PortfolioData is a table, PortfolioID is set by default to the
corresponding variable name in the table.
Data Types: char | string

5-47

5 Functions — Alphabetical List

'VaRID' — VaR identifier for VaRData columns
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified using a character vector or string.
Multiple VaRIDs are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of
character vectors or string vector with user-defined IDs for the VaRData columns.

If VaRData is a numeric array, the default value for VaRID is 'VaR'. If NumVaRs = 1
or NumVaRs > 1, the default value is 'VaR1', 'VaR2', and so on. If VaRData is a table,
'VaRID' is set by default to the corresponding variable names in the table

Data Types: char | cell | string

'VaRLevel' — VaR confidence level
0.95 (default) | numeric with values between 0 and 1 | numeric array with values
between 0 and 1

VaR confidence level, specified as a numeric between 0 and 1 or a 1-by-NumVaRs numeric
array with values between 0 and 1 for the corresponding columns in VaRData.

Data Types: double

Output Arguments

vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given portfolio data and VaR data (the
PortfolioData and VaRData properties) and all combinations of portfolio ID, VaR ID,
and VaR level to be tested (the PortfolioID, VaRID, and VarLevel properties). For
more information on a vbt object, see varbacktest.

The vbt object has the following properties:

• PortfolioData — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData — NumRows-by-NumVaRs numeric array containing a copy of the VaRData
• PortfolioID — String containing the PortfolioID
• VaRID — 1-by-NumVaRs string vector containing the VaRIDs for the corresponding

columns in VaRData

5-48

 varbacktest

• VaRLevel — 1-by-NumVaRs numeric array containing the VaRLevels for the
corresponding columns in VaRData.

More About
• varbacktest

References

Basel Committee on Banking Supervision, Supervisory Framework for the Use of
'Backtesting' in Conjunction with the Internal Models Approach to Market Risk Capital
Requirements. January, 1996, http://www.bis.org/publ/bcbs22.htm.

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

Cogneau, P. “Backtesting Value-at-Risk: How Good is the Model?" Intelligent Risk,
PRMIA, July, 2015.

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton
University Press, 2005.

Nieppola, O. “Backtesting Value-at-Risk Models.” Master's Thesis, Helsinki School of
Economics, 2009.

See Also
bin | cc | cci | pof | runtests | summary | table | tbf | tbfi | tl | tuff

Introduced in R2016b

5-49

http://www.bis.org/publ/bcbs22.htm

5 Functions — Alphabetical List

bin
Binomial test for value-at-risk (VaR) backtesting

Syntax

TestResults = bin(vbt)

TestResults = bin(vbt,Name,Value)

Description

TestResults = bin(vbt) generates the binomial test results for value-at-risk (VaR)
backtesting.

TestResults = bin(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate Bin Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

Generate the bin test results.

5-50

 bin

TestResults = bin(vbt)

TestResults =

 PortfolioID VaRID VaRLevel Bin ZScoreBin PValueBin Observations Failures TestLevel

 ___________ _____ ________ ______ _________ _________ ____________ ________ _________

 "Portfolio" "VaR" 0.95 accept 0.68905 0.24539 1043 57 0.95

Run Bin Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the bin test results using the TestLevel optional argument.

TestResults = bin(vbt,'TestLevel',0.90)

TestResults =

 PortfolioID VaRID VaRLevel Bin ZScoreBin PValueBin Observations Failures TestLevel

 ___________ ______________ ________ ______ _________ __________ ____________ ________ _________

5-51

5 Functions — Alphabetical List

 "Equity" "Normal95" 0.95 accept 0.68905 0.24539 1043 57 0.9

 "Equity" "Normal99" 0.99 reject 2.0446 0.020448 1043 17 0.9

 "Equity" "Historical95" 0.95 accept 0.9732 0.16523 1043 59 0.9

 "Equity" "Historical99" 0.99 accept 0.48858 0.31257 1043 12 0.9

 "Equity" "EWMA95" 0.95 accept 0.9732 0.16523 1043 59 0.9

 "Equity" "EWMA99" 0.99 reject 3.6006 0.00015875 1043 22 0.9

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = bin(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — Bin test results
table

5-52

 bin

Bin test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'Bin' — Categorical array with categories accept and reject that indicate the

result of the bin test
• 'ZScoreBin' — Z-score of the number of failures
• 'PValueBin' — P-value of the bin test
• 'Observations' — Number of observations
• 'Failures' — Number of failures.
• 'TestLevel' — Test confidence level.

Note: For bin test results, the terms accept and reject are used for convenience,
technically a bin test does not accept a model. Rather, the test fails to reject it.

More About

Binomial Test (Bin)

The bin function performs a binomial test to assess if the number of failures is
consistent with the VaR confidence level.

The binomial test is based on a normal approximation to the binomial distribution.

Algorithms

The result of the binomial test is based on a normal approximation to a binomial
distribution. Suppose:

• N is the number of observations.
• p = 1 – VaRLevel is the probability of observing a failure if the model is correct.
• x is the number of failures.

5-53

5 Functions — Alphabetical List

If the failures are independent, then the number of failures is distributed as a binomial
distribution with parameters N and p. The expected number of failures is N*p, and the
standard deviation of the number of failures is sqrt(N*p*(1 - p)).

The test statistic for the bin test is the z-score, defined as:

 ZScoreBin = (x - N*p)/sqrt(N*p*(1 - p)).

The z-score is approximately follows a standard normal distribution. This approximation
is not reliable for small values of N or small values of p, but for typical uses in VaR
backtesting analyses (N = 250 or much larger, p in the range 1 – 10%) the approximation
gives results in line with other tests.

The p-value of the bin test is the probability that a standard normal distribution exceeds
the absolute value of the z-score

 PValueBin = 1 - F(|ZScoreBin|),

where F is the standard normal cumulative distribution. When too few failures are
observed, relative to the expected failures, PValueBin is (approximately) the probability
of observing that many failures or fewer. For too many failures, this is (approximately)
the probability of observing that many failures or more.
• “Binomial Test” on page 2-3
• varbacktest

References

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

See Also
cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b

5-54

 cc

cc

Conditional coverage mixed test for value-at-risk (VaR) backtesting

Syntax

TestResults = cc(vbt)

TestResults = cc(vbt,Name,Value)

Description

TestResults = cc(vbt) generates the conditional coverage (CC) mixed test for value-
at-risk (VaR) backtesting.

TestResults = cc(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate CC Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

5-55

5 Functions — Alphabetical List

Generate the cc test results.

TestResults = cc(vbt)

TestResults =

 PortfolioID VaRID VaRLevel CC LRatioCC PValueCC POF LRatioPOF PValuePOF CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel

 ___________ _____ ________ ______ ________ ________ ______ _________ _________ ______ _________ _________ ____________ ________ ___ ___ ___ ___ _________

 "Portfolio" "VaR" 0.95 accept 0.72013 0.69763 accept 0.46147 0.49694 accept 0.25866 0.61104 1043 57 932 53 53 4 0.95

Run the CC Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cc test results using the TestLevel optional input.

TestResults = cc(vbt,'TestLevel',0.90)

5-56

 cc

TestResults =

 PortfolioID VaRID VaRLevel CC LRatioCC PValueCC POF LRatioPOF PValuePOF CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel

 ___________ ______________ ________ ______ ________ _________ ______ _________ _________ ______ _________ _________ ____________ ________ ____ ___ ___ ___ _________

 "Equity" "Normal95" 0.95 accept 0.72013 0.69763 accept 0.46147 0.49694 accept 0.25866 0.61104 1043 57 932 53 53 4 0.9

 "Equity" "Normal99" 0.99 accept 4.0757 0.13031 reject 3.5118 0.060933 accept 0.56393 0.45268 1043 17 1008 17 17 0 0.9

 "Equity" "Historical95" 0.95 accept 1.0487 0.59194 accept 0.91023 0.34005 accept 0.13847 0.70981 1043 59 928 55 55 4 0.9

 "Equity" "Historical99" 0.99 accept 0.5073 0.77597 accept 0.22768 0.63325 accept 0.27962 0.59695 1043 12 1018 12 12 0 0.9

 "Equity" "EWMA95" 0.95 accept 0.95051 0.62173 accept 0.91023 0.34005 accept 0.040277 0.84094 1043 59 927 56 56 3 0.9

 "Equity" "EWMA99" 0.99 reject 10.779 0.0045645 reject 9.8298 0.0017171 accept 0.94909 0.32995 1043 22 998 22 22 0 0.9

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = cc(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

5-57

5 Functions — Alphabetical List

Output Arguments

TestResults — cc test results
table

cc test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'CC' — Categorical array with the categories accept and reject that indicate the

result of the cc test
• 'LRatioCC' — Likelihood ratio of the cc test
• 'PValueCC' — P-value of the cc test
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'CCI' — Categorical array with categories 'accept' and 'reject' that indicate

the result of the cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note: For cc test results, the terms accept and reject are used for convenience,
technically a cc test does not accept a model. Rather, the test fails to reject it.

5-58

 cc

More About

Conditional Coverage (CC) Mixed Test

The cc function performs the conditional coverage mixed test, also known as
Christoffersen's interval forecasts method.

'Mixed' means that it combines a frequency and an independence test. The frequency
test is Kupiec's proportion of failures test, implemented by the pof function. The
independence test is the conditional coverage independence test implemented by the cci
function. This is a likelihood ratio test proposed by Christoffersen (1998) to assess the
independence of failures on consecutive time periods. The CC test combines the POF test
and the CCI test.

Algorithms

The likelihood ratio (test statistic) of the cc test is the sum of the likelihood ratios of the
pof and cci tests,

 LRatioCC = LRatioPOF + LRatioCCI

which is asymptotically distributed as a chi-square distribution with two degrees of
freedom. See the Algorithms section in pof and cci for the definition of their likelihood
ratios.

The p-value of the cc test is the probability that a chi-square distribution with two
degrees of freedom exceeds the likelihood ratio LRatioCC,

PValueCC = 1 - F(LRatioCC)

where F is the cumulative distribution of a chi-square variable with two degrees of
freedom.

The result of the cc test is to accept if

 F(LRatioCC) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
two degrees of freedom.
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• varbacktest

5-59

5 Functions — Alphabetical List

References

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

See Also
bin | cci | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b

5-60

 cci

cci
Conditional coverage independence test for value-at-risk (VaR) backtesting

Syntax

TestResults = cci(vbt)

TestResults = cci(vbt,Name,Value)

Description

TestResults = cci(vbt) generates the conditional coverage independence (CCI) for
value-at-risk (VaR) backtesting.

TestResults = cci(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate CCI Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

Generate the cci test results.

5-61

5 Functions — Alphabetical List

TestResults = cci(vbt)

TestResults =

 PortfolioID VaRID VaRLevel CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel

 ___________ _____ ________ ______ _________ _________ ____________ ________ ___ ___ ___ ___ _________

 "Portfolio" "VaR" 0.95 accept 0.25866 0.61104 1043 57 932 53 53 4 0.95

Run the CCI Test for VaR Backtests for Multiple VaR's at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cci test results using the TestLevel optional input.

TestResults = cci(vbt,'TestLevel',0.90)

TestResults =

 PortfolioID VaRID VaRLevel CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel

 ___________ ______________ ________ ______ _________ _________ ____________ ________ ____ ___ ___ ___ _________

5-62

 cci

 "Equity" "Normal95" 0.95 accept 0.25866 0.61104 1043 57 932 53 53 4 0.9

 "Equity" "Normal99" 0.99 accept 0.56393 0.45268 1043 17 1008 17 17 0 0.9

 "Equity" "Historical95" 0.95 accept 0.13847 0.70981 1043 59 928 55 55 4 0.9

 "Equity" "Historical99" 0.99 accept 0.27962 0.59695 1043 12 1018 12 12 0 0.9

 "Equity" "EWMA95" 0.95 accept 0.040277 0.84094 1043 59 927 56 56 3 0.9

 "Equity" "EWMA99" 0.99 accept 0.94909 0.32995 1043 22 998 22 22 0 0.9

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = cci(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — cci test results
table

5-63

5 Functions — Alphabetical List

cci test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'CCI' — Categorical array with the categories accept and reject that indicate the

result of the cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note: For cci test results, the terms accept and reject are used for convenience,
technically a cci test does not accept a model. Rather, the test fails to reject it.

More About

Conditional Coverage Independence (CCI) Test

The cci function performs the conditional coverage independence test.

This is a likelihood ratio test proposed by Christoffersen (1998) to assess the
independence of failures on consecutive time periods. For the conditional coverage mixed
test, see the cc function.

Algorithms

To define the likelihood ratio (test statistic) of the cc test, first define the following
quantities:

5-64

 cci

• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures

Then define the following conditional probability estimates:

• p01 = Probability of having a failure on period t, given that there was no failure on
periodt – 1

= N01 / (N00 + N01)

• p11 = Probability of having a failure on period t, given that there was a failure on
periodt – 1

= N11 / (N10 + N11)

Define also the unconditional probability estimate of observing a failure:

pUC = Probability of having a failure on period t

 = (N01 + N11) / (N00 + N01 + N10 + N11)

The likelihood ratio of the CCI test is then given by

LRatioCCI = -2*((N00+N10)*log(1 - pUC) + (N01+N11)*log(pUC)...

 - N00*log(1-p01) - N01*log(p01)...

 - N10*log(1-p11) - N11*log(p11))

which is asymptotically distributed as a chi-square distribution with one degree of
freedom.

The p-value of the CCI test is the probability that a chi-square distribution with one
degree of freedom exceeds the likelihood ratio LRatioCCI,

PValueCC = 1 - F(LRatioCCI)

where F is the cumulative distribution of a chi-square variable with one degree of
freedom.

The result of the test is to accept if

 F(LRatioCCI) < F(TestLevel)

5-65

5 Functions — Alphabetical List

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
one degree of freedom.

If one or more of the quantities N00, N10, N01, or N11 are zero, the likelihood ratio is
handled differently. The likelihood ratio as defined above is composed of three likelihood
functions of the form

L = (1 - p)^n1 * p^n2

For example, in the numerator of the likelihood ratio, there is a likelihood function of the
form L with p = pUC, n1 = N00 + N10, and n2 = N01 + N11. There are two such likelihood
functions in the denominator of the likelihood ratio.

It can be shown that whenever n1 = 0 or n2 = 0, the likelihood function L can be replaced
by the constant value 1. Therefore, whenever N00, N10, N01, or N11 is zero, replace the
corresponding likelihood functions by 1 in the likelihood ratio, and the likelihood ratio is
well defined.
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• varbacktest

References

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

See Also
bin | cc | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b

5-66

 pof

pof
Proportion of failures test for value-at-risk (VaR) backtesting

Syntax

TestResults = pof(vbt)

TestResults = pof(vbt,Name,Value)

Description

TestResults = pof(vbt) generates the proportion of failures (POF) test for value-at-
risk (VaR) backtesting.

TestResults = pof(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate POF Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

Generate the pof test results.

5-67

5 Functions — Alphabetical List

TestResults = pof(vbt,'TestLevel',0.99)

TestResults =

 PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Failures TestLevel

 ___________ _____ ________ ______ _________ _________ ____________ ________ _________

 "Portfolio" "VaR" 0.95 accept 0.46147 0.49694 1043 57 0.99

Run the POF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the pof test results using the TestLevel optional input.

TestResults = pof(vbt,'TestLevel',0.90)

TestResults =

 PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Failures TestLevel

 ___________ ______________ ________ ______ _________ _________ ____________ ________ _________

5-68

 pof

 "Equity" "Normal95" 0.95 accept 0.46147 0.49694 1043 57 0.9

 "Equity" "Normal99" 0.99 reject 3.5118 0.060933 1043 17 0.9

 "Equity" "Historical95" 0.95 accept 0.91023 0.34005 1043 59 0.9

 "Equity" "Historical99" 0.99 accept 0.22768 0.63325 1043 12 0.9

 "Equity" "EWMA95" 0.95 accept 0.91023 0.34005 1043 59 0.9

 "Equity" "EWMA99" 0.99 reject 9.8298 0.0017171 1043 22 0.9

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = pof(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — pof test results
table

5-69

5 Functions — Alphabetical List

pof test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR level to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TestLevel' — Test confidence level

Note: For pof test results, the terms accept and reject are used for convenience,
technically a pof test does not accept a model. Rather, the test fails to reject it.

More About

Proportion of Failures (POF) Test

The pof function performs Kupiec's proportion of failures test.

The POF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the
proportion of failures (number of failures divided by number of observations) is consistent
with the VaR confidence level.

Algorithms

The likelihood ratio (test statistic) of the pof test is given by
LRatioPOF = -2*((N - x)*log(N*(1 - pVaR)/(N - x)) + x*log(N*pVaR/x))

where N is the number of observations, x is the number of failures, and pVaR = 1 −
VaRLevel. This test statistic is asymptotically distributed as a chi-square distribution
with one degree of freedom. By the properties of the logarithm,

5-70

 pof

LRatioPOF = -2*N*log(1-pVaR) if x = 0,

and

LRatioPOF = -2*N*log(pVaR) if x = N.

The p-value of the POF test is the probability that a chi-square distribution with one
degree of freedom exceeds the likelihood ratio LRatioPOF

PValuePOF = 1 - F(LRatioPOF),

where F is the cumulative distribution of a chi-square variable with one degree of
freedom.

The result of the test is to accept if

 F(LRatioPOF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
one degree of freedom.
• “Kupiec’s POF and TUFF Tests” on page 2-4
• varbacktest

References

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.

See Also
bin | cc | cci | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b

5-71

5 Functions — Alphabetical List

runtests
Run all tests in varbacktest

Syntax

TestResults = runtests(vbt)

TestResults = runtests(vbt,Name,Value)

Description

TestResults = runtests(vbt) runs all the tests in the varbacktest object.
runtests reports only the final test result. For test details such as likelihood ratios, run
individual tests.

TestResults = runtests(vbt,Name,Value) adds an optional name-value pair
argument for TestLevel.

Examples

Run All VaR Backtests

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

5-72

 runtests

Generate the TestResults report for all VaR backtests.

TestResults = runtests(vbt,'TestLevel',0.99)

TestResults =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ _____ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "Portfolio" "VaR" 0.95 green accept accept accept accept accept reject reject

Run All VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object and run all tests.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

 runtests(vbt)

ans =

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI

 ___________ ______________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "Equity" "Normal95" 0.95 green accept accept accept accept accept reject reject

 "Equity" "Normal99" 0.99 yellow reject accept accept accept accept accept accept

 "Equity" "Historical95" 0.95 green accept accept accept accept accept reject reject

 "Equity" "Historical99" 0.99 green accept accept accept accept accept accept accept

 "Equity" "EWMA95" 0.95 green accept accept accept accept accept accept accept

 "Equity" "EWMA99" 0.99 yellow reject reject accept reject accept reject accept

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

5-73

5 Functions — Alphabetical List

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = runtests(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with categories green, yellow, and red that

indicate the result of the traffic light (tl) test

5-74

 runtests

• 'Bin' — Categorical array with categories accept and reject that indicate the
result of the bin test

• 'POF' — Categorical array with the categories accept and reject that indicate the
result of the pof test.

• 'TUFF' — Categorical array with the categories accept and reject that indicate
the result of the tuff test

• 'CC' — Categorical array with the categories accept and reject that indicate the
result of the cc test

• 'CCI' — Categorical array with the categories accept and reject that indicate the
result of the cci test

• 'TBF' — Categorical array with the categories accept and reject that indicate the
result of the tbf test

• 'TBFI' — Categorical array with the categories accept and reject that indicate
the result of the tbfi test

Note: For the test results, the terms accept and reject are used for convenience,
technically a test does not accept a model. Rather, a test fails to reject it.

More About
• varbacktest

See Also
cc | cci | pof | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b

5-75

5 Functions — Alphabetical List

summary
Report on varbacktest data

Syntax

S = summary(vbt)

Description

S = summary(vbt) returns a basic report on the given varbacktest data, including the
number of observations, the number of failures, the observed confidence level, and so on
(see S for details).

Examples

Generate a Summary Report

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

Generate the summary report.

S = summary(vbt)

5-76

 summary

S =

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing

 ___________ _____ ________ _____________ ____________ ________ ________ _____ ____________ _______

 "Portfolio" "VaR" 0.95 0.94535 1043 57 52.15 1.093 58 0

Run a Summary Report for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object and generate a summary report.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

S = summary(vbt)

S =

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing

 ___________ ______________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "Equity" "Normal95" 0.95 0.94535 1043 57 52.15 1.093 58 0

 "Equity" "Normal99" 0.99 0.9837 1043 17 10.43 1.6299 173 0

 "Equity" "Historical95" 0.95 0.94343 1043 59 52.15 1.1314 55 0

 "Equity" "Historical99" 0.99 0.98849 1043 12 10.43 1.1505 173 0

 "Equity" "EWMA95" 0.95 0.94343 1043 59 52.15 1.1314 28 0

 "Equity" "EWMA99" 0.99 0.97891 1043 22 10.43 2.1093 143 0

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

5-77

5 Functions — Alphabetical List

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Output Arguments

S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as number of periods

without failures divided by number of observations
• 'Observations' — Number of observations, where missing values are removed

from the data
• 'Failures' — Number of failures, where a failure occurs whenever the loss

(negative of portfolio data) exceeds the VaR
• 'Expected' — Expected number of failures, defined as the number of observations

multiplied by one minus the VaR level
• 'Ratio' — Ratio of the number of failures to expected number of failures
• 'FirstFailure' — Number of periods until first failure
• 'Missing' — Number of periods with missing values removed from the sample

More About
• varbacktest

See Also
cc | cci | pof | runtests | tbf | tbfi | tl | tuff | varbacktest

5-78

 summary

Introduced in R2016b

5-79

5 Functions — Alphabetical List

tbf

Time between failures mixed test for value-at-risk (VaR) backtesting

Syntax

TestResults = tbf(vbt)

TestResults = tbf(vbt,Name,Value)

Description

TestResults = tbf(vbt) generates the time between failures mixed test (TBF) for
value-at-risk (VaR) backtesting.

TestResults = tbf(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TBF Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

5-80

 tbf

Generate the tbf test results.

TestResults = tbf(vbt)

TestResults =

 PortfolioID VaRID VaRLevel TBF LRatioTBF PValueTBF POF LRatioPOF PValuePOF TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel

 ___________ _____ ________ ______ _________ _________ ______ _________ _________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "Portfolio" "VaR" 0.95 reject 88.952 0.0055565 accept 0.46147 0.49694 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.95

Run the TBF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbf test results using the TestLevel optional input.

TestResults = tbf(vbt,'TestLevel',0.90)

5-81

5 Functions — Alphabetical List

TestResults =

 PortfolioID VaRID VaRLevel TBF LRatioTBF PValueTBF POF LRatioPOF PValuePOF TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel

 ___________ ______________ ________ ______ _________ _________ ______ _________ _________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "Equity" "Normal95" 0.95 reject 88.952 0.0055565 accept 0.46147 0.49694 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.9

 "Equity" "Normal99" 0.99 reject 26.441 0.090095 reject 3.5118 0.060933 accept 22.929 0.15157 1043 17 3 21.25 48 78.25 215 0.9

 "Equity" "Historical95" 0.95 reject 83.63 0.023609 accept 0.91023 0.34005 reject 82.719 0.022513 1043 59 1 3 13 25 85 0.9

 "Equity" "Historical99" 0.99 accept 16.456 0.22539 accept 0.22768 0.63325 accept 16.228 0.18101 1043 12 3 19.5 45 152.5 200 0.9

 "Equity" "EWMA95" 0.95 accept 72.545 0.12844 accept 0.91023 0.34005 accept 71.635 0.12517 1043 59 1 4 13 25.75 82 0.9

 "Equity" "EWMA99" 0.99 reject 41.66 0.0099428 reject 9.8298 0.0017171 reject 31.83 0.080339 1043 22 2 16 40 56 143 0.9

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = tbf(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

5-82

 tbf

Output Arguments

TestResults — tbf test results
table

tbf test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBF' — Categorical array with categories accept and reject that indicate the

result of the tbf test
• 'LRatioTBF' — Likelihood ratio of the tbf test
• 'PValueTBF' — P-value of the tbf test
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the POF test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'TBFI' — Categorical array with the categories accept and reject that indicate

the result of the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level

5-83

5 Functions — Alphabetical List

Note: For tbf test results, the terms accept and reject are used for convenience,
technically a tbf test does not accept a model. Rather, the test fails to reject it.

More About

Time Between Failures (TBF) Mixed Test

The tbf function performs the time between failures mixed test, also known as the Haas
mixed Kupiec test.

'Mixed' means that it combines a frequency and an independence test. The frequency test
is Kupiec's proportion of failures (POF) test. The independence test is the time between
failures independence (TBFI) test. The TBF test is an extension of Kupiec's time until
first failure (TUFF) test, proposed by Haas (2001), to take into account not only the time
until the first failure, but the time between all failures. The tbf function combines the
pof test and the tbfi test.

Algorithms

The likelihood ratio (test statistic) of the TBF test is the sum of the likelihood ratios of
the POF and TBFI tests

 LRatioTBF = LRatioPOF + LRatioTBFI,

which is asymptotically distributed as a chi-square distribution with x+1 degrees of
freedom, wherex is the number of failures. See the Algorithms sections for pof and tbfi
for the definitions of their likelihood ratios.

The p-value of the tbf test is the probability that a chi-square distribution with x+1
degrees of freedom exceeds the likelihood ratio LRatioTBF

 PValueTBF = 1 - F(LRatioTBF)

where F is the cumulative distribution of a chi-square variable with x+1 degrees of
freedom and x is the number of failures.

The result of the test is to accept if

 F(LRatioTBF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable
with x+1 degrees of freedom and x is the number of failures. If the likelihood ratio

5-84

 tbf

(LRatioTBF) is undefined, that is, with no failures yet, the TBF result is to accept only
when both POF and TBFI tests accept.
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
• varbacktest

References

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

See Also
bin | cc | cci | pof | runtests | summary | tbfi | tl | tuff | varbacktest

Introduced in R2016b

5-85

5 Functions — Alphabetical List

tbfi
Time between failures independence test for value-at-risk (VaR) backtesting

Syntax

TestResults = tbfi(vbt)

TestResults = tbfi(vbt,Name,Value)

Description

TestResults = tbfi(vbt) generates the time between failures independence (TBFI)
test for value-at-risk (VaR) backtesting.

TestResults = tbfi(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TBFI Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

Generate the tbfi test results.

5-86

 tbfi

TestResults = tbfi(vbt)

TestResults =

 PortfolioID VaRID VaRLevel TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel

 ___________ _____ ________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "Portfolio" "VaR" 0.95 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.95

Run the TBFI Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbfi test results using the TestLevel optional input.

TestResults = tbfi(vbt,'TestLevel',0.90)

TestResults =

 PortfolioID VaRID VaRLevel TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel

 ___________ ______________ ________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

5-87

5 Functions — Alphabetical List

 "Equity" "Normal95" 0.95 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.9

 "Equity" "Normal99" 0.99 accept 22.929 0.15157 1043 17 3 21.25 48 78.25 215 0.9

 "Equity" "Historical95" 0.95 reject 82.719 0.022513 1043 59 1 3 13 25 85 0.9

 "Equity" "Historical99" 0.99 accept 16.228 0.18101 1043 12 3 19.5 45 152.5 200 0.9

 "Equity" "EWMA95" 0.95 accept 71.635 0.12517 1043 59 1 4 13 25.75 82 0.9

 "Equity" "EWMA99" 0.99 reject 31.83 0.080339 1043 22 2 16 40 56 143 0.9

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = tbfi(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — tbfi test results
table

5-88

 tbfi

tbfi test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBFI' — Categorical array with the categories accept and reject that indicate

the result of the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level

Note: For tbfi test results, the terms accept and reject are used for convenience,
technically a tbfi test does not accept a model. Rather, the test fails to reject it.

More About

Time Between Failures Independence (TBIF) Test

The tbfi function performs the time between failures independence test. This test is an
extension of Kupiec's time until first failure (TUFF) test.

TBFI was proposed by Haas (2001) to test for independence. It takes into account not
only the time until the first failure, but also the time between all failures. For the time
between failures mixed test, see the tbf function.

5-89

5 Functions — Alphabetical List

Algorithms

The likelihood ratio (test statistic) of the TBFI test is the sum of TUFF likelihood ratios
for each time between failures. If x is the number of failures, and n_1 is the number of
periods until the first failure, n_2 the number of periods between the first and the second
failure, and, in general, n_i is the number of periods between failure i – 1 and failure i,
then a likelihood ratio LRatioTBFI_i for each n_i is based on the TUFF formula

LRatioTBFI_i = LRatioTUFF(ni) = ...

 -2*(log(pVaR) + (ni - 1)*log(1 - pVaR) + ...

 ni*log(ni) - (ni - 1)*log(ni - 1)).

As with the tuff test, LRatioTBFI_i = -2*log(pVaR) if n_i = 1.

The TBFI likelihood ratio LRatioTBFI is then the sum of the individual likelihood ratios
for all times between failures

 LRatioTBFI = sum_{i=1:x} LRatioTBFI_i,

which is asymptotically distributed as a chi-square distribution with x degrees of
freedom, where x is the number of failures.

The p-value of the tbfi test is the probability that a chi-square distribution with x
degrees of freedom exceeds the likelihood ratio LRatioTBFI

 PValueTBFI = 1 - F(LRatioTBFI)

where F is the cumulative distribution of a chi-square variable with x degrees of freedom
and x is the number of failures.

The result of the test is to accept if

F(LRatioTBFI) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
x degrees of freedom and x is the number of failures.

If there are no failures in the sample, the test statistic is not defined. This is handled the
same as a TUFF test with no failures. For more information, see tuff.
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
• varbacktest

5-90

 tbfi

References

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tl | tuff | varbacktest

Introduced in R2016b

5-91

5 Functions — Alphabetical List

tl
Traffic light test for value-at-risk (VaR) backtesting

Syntax

TestResults = tl(vbt)

Description

TestResults = tl(vbt) generates the traffic light (TL) test for value-at-risk (VaR)
backtesting.

Examples

Generate Traffic Light Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

Generate the tl test results.

TestResults = tl(vbt)

5-92

 tl

TestResults =

 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures

 ___________ _____ ________ _____ ___________ _______ ________ ____________ ________

 "Portfolio" "VaR" 0.95 green 0.77913 0.26396 0 1043 57

Run the TL Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tl test results.

TestResults = tl(vbt)

TestResults =

 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures

 ___________ ______________ ________ ______ ___________ _________ ________ ____________ ________

 "Equity" "Normal95" 0.95 green 0.77913 0.26396 0 1043 57

 "Equity" "Normal99" 0.99 yellow 0.97991 0.03686 0.26582 1043 17

 "Equity" "Historical95" 0.95 green 0.85155 0.18232 0 1043 59

5-93

5 Functions — Alphabetical List

 "Equity" "Historical99" 0.99 green 0.74996 0.35269 0 1043 12

 "Equity" "EWMA95" 0.95 green 0.85155 0.18232 0 1043 59

 "Equity" "EWMA99" 0.99 yellow 0.99952 0.0011122 0.43511 1043 22

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Output Arguments

TestResults — tl test results
table

tl test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with the categories green, yellow, and red that

indicate the result of the traffic light tl test
• 'Probability' — Cumulative probability of observing up to the corresponding

number of failures
• 'TypeI' — Probability of observing the corresponding number of failures or more if

the model is correct
• 'Increase' — Increase in the scaling factor

5-94

 tl

• 'Observations' — Number of observations
• 'Failures' — Number of failures

More About

Traffic Light Test

The tl function performs Basel's traffic light test, also known as three-zone test. Basel’s
methodology can be applied to any number of time periods and VaR confidence levels, as
explained in “Algorithms” on page 5-96.

The Basel Committee reports, as an example, a table of the three zones for 250 time
periods and a VaR confidence level of 0.99. The increase in scaling factor in the table
reported by Basel has some ad-hoc adjustments (rounding, etc.) not explicitly described in
the Basel document. The following table compares the increase in scaling factor reported
in the Basel document for the case of 250 periods and 0.99 % VaR confidence level, and
the increase in the factors reported by the TL test.

Failures Zone Increase Basel Increase TL

0 Green 0 0
1 Green 0 0
2 Green 0 0
3 Green 0 0
4 Green 0 0
5 Yellow 0.40 0.3982
6 Yellow 0.50 0.5295
7 Yellow 0.65 0.6520
8 Yellow 0.75 0.7680
9 Yellow 0.85 0.8791
10 Red 1 1

The tl function computes the scaling factor following the methodology described in the
Basel document (see Bibliography) and is explained in the “Algorithms” on page 5-96
section. The tl function does not apply any ad-hoc adjustments.

5-95

5 Functions — Alphabetical List

Algorithms

The traffic light test is based on a binomial distribution. Suppose N is the number of
observations, p = 1 − VaRLevel is the probability of observing a failure if the model is
correct, and x is the number of failures.

The test computes the cumulative probability of observing up to x failures, reported in
the 'Probability' column,

Probability = Probability(X <= x|N,p) = F(x|N,p),

where F(x|N,p) is the cumulative distribution of a binomial variable with parameters
N and p, with p = 1 − VaRLevel. The three zones are defined based on this cumulative
probability:

• Green: F(x|N,p) <= 0.95
• Yellow: 0.95 < F(x|N,p) <= 0.9999
• Red: 0.9999 < F(x|N,p)

The probability of a Type-I error, reported in the 'TypeI' column, is TypeI =
TypeI(x|N,p) = 1 - F(X >= x|N,p).

This probability corresponds to the probability of mistakenly rejecting the model if the
model were correct. Probability and TypeI do not sum up to 1, they exceed 1 by
exactly the probability of having x failures.

The increase in scaling factor, reported in the 'Increase' column, is always 0 for the
green zone and always 1 for the red zone. For the yellow zone, it is an adjustment
based on the relative difference between the assumed VaR confidence level (VaRLevel)
and the observed confidence level (x / N), where N is the number of observations andx
is the number of failures. To find the increase under the assumption of a normal
distribution, compute the critical values zAssumed and zObserved.

The increase to the baseline scaling factor is given by

Increase = Baseline*(zAssumed/zObserved - 1),

with the restriction that the increase cannot be negative or greater than 1. The baseline
scaling factor in the Basel rules is 3.

The tl function computes the scaling factor following this methodology, which is also
described in the Basel document (see Bibliography). The tl function does not apply any
ad-hoc adjustments.

5-96

 tl

• “Traffic Light Test” on page 2-3
• varbacktest

References

Basel Committee on Banking Supervision, Supervisory Framework for the Use of
'Backtesting' in Conjunction with the Internal Models Approach to Market Risk Capital
Requirements. January, 1996, http://www.bis.org/publ/bcbs22.htm.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tuff | varbacktest

Introduced in R2016b

5-97

http://www.bis.org/publ/bcbs22.htm

5 Functions — Alphabetical List

tuff
Time until first failure test for value-at-risk (VaR) backtesting

Syntax

TestResults = tuff(vbt)

TestResults = tuff(vbt,Name,Value)

Description

TestResults = tuff(vbt) generates the time until first failure (TUFF) test for value-
at-risk (VaR) backtesting.

TestResults = tuff(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TUFF Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×1 double]

 PortfolioID: "Portfolio"

 VaRID: "VaR"

 VaRLevel: 0.9500

Generate the tuff test results.

5-98

 tuff

TestResults = tuff(vbt)

TestResults =

 PortfolioID VaRID VaRLevel TUFF LRatioTUFF PValueTUFF FirstFailure Observations TestLevel

 ___________ _____ ________ ______ __________ __________ ____________ ____________ _________

 "Portfolio" "VaR" 0.95 accept 1.7354 0.18773 58 1043 0.95

Run the TUFF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

 vbt = varbacktest(EquityIndex,...

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

 'PortfolioID','Equity',...

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =

 varbacktest with properties:

 PortfolioData: [1043×1 double]

 VaRData: [1043×6 double]

 PortfolioID: "Equity"

 VaRID: [1×6 string]

 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tuff test results using the TestLevel optional input.

TestResults = tuff(vbt,'TestLevel',0.90)

TestResults =

 PortfolioID VaRID VaRLevel TUFF LRatioTUFF PValueTUFF FirstFailure Observations TestLevel

 ___________ ______________ ________ ______ __________ __________ ____________ ____________ _________

5-99

5 Functions — Alphabetical List

 "Equity" "Normal95" 0.95 accept 1.7354 0.18773 58 1043 0.9

 "Equity" "Normal99" 0.99 accept 0.36686 0.54472 173 1043 0.9

 "Equity" "Historical95" 0.95 accept 1.5348 0.2154 55 1043 0.9

 "Equity" "Historical99" 0.99 accept 0.36686 0.54472 173 1043 0.9

 "Equity" "EWMA95" 0.95 accept 0.13304 0.7153 28 1043 0.9

 "Equity" "EWMA99" 0.99 accept 0.14596 0.70243 143 1043 0.9

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = tuff(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — tuff test results
table

5-100

 tuff

tuff test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TUFF' — Categorical array with the categories accept and reject that indicate

the result of the tuff test
• 'LRatioTUFF' — Likelihood ratio of the tuff test
• 'PValueTUFF' — P-value of the tuff test
• 'FirstFailure' — Number of periods until the first failure
• 'Observations' — Number of observations
• 'TestLevel' — Test confidence level

Note: For tuff test results, the terms accept and reject are used for convenience,
technically a tuff test does not accept a model. Rather, the test fails to reject it.

More About

Time Until First Failure (TUFF) Test

The tuff function performs Kupiec's time until first failure test.

The TUFF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the
number of periods until the first failure is consistent with the VaR confidence level.

Algorithms

The likelihood ratio (test statistic) of the tuff test is given by

 LRatioTUFF = -2*(log(pVaR) + (n - 1)*log(1 - pVaR) + ...

 n*log(n) - (n - 1)*log(n - 1)),

where n is the number of periods until the first failure and pVaR = 1 − VaRLevel. By the
properties of the logarithm (if n = 1),

5-101

5 Functions — Alphabetical List

LRatioTUFF = -2*log(pVaR).

This is asymptotically distributed as a chi-square distribution with one degree of
freedom.

The p-value of the tuff test is the probability that a chi-square distribution with one
degree of freedom exceeds the likelihood ratio LRatioTUFF

 PValueTUFF = 1 - F(LRatioTUFF),

where F is the cumulative distribution of a chi-square variable with one degree of
freedom.

The result of the test is to accept if

 F(LRatioTUFF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
1 degree of freedom.

If the sample has no failures, the test statistic is not defined. However, there are two
cases distinguished here:

• If the number of observations is large enough that no matter when the first failure
occurred it would be too late to pass the test, then the model is rejected. Technically,
this happens if the number of observations N is larger than 1/pVaR (large enough
relative to the VaR confidence level) and if the test fails when n = N+1 (the earliest
observation for the first VaR failure). In this case, the likelihood ratio is reported for n
= N+1, and the corresponding p-value.

• In all other cases, it is not possible to tell with certainty whether the result of the test
would eventually be to accept or reject the model. There are ranges of possible first
failure values that would result in accepting or rejecting the model. In these cases, the
tuff function accepts the model and reports undefined (NaN) values for the likelihood
ratio and p-value.

• “Kupiec’s POF and TUFF Tests” on page 2-4
• varbacktest

References

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.

5-102

 tuff

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | varbacktest

Introduced in R2016b

5-103

