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Getting Started

• “Risk Management Toolbox Product Description” on page 1-2
• “Risk Modeling with Risk Management Toolbox” on page 1-3



1 Getting Started

Risk Management Toolbox Product Description
Develop risk models and perform risk simulation

Risk Management Toolbox provides functions for mathematical modeling and simulation
of credit and market risk. You can model probabilities of default, create credit scorecards,
perform credit portfolio analysis, and backtest models to assess potential for financial
loss. The toolbox lets you assess corporate and consumer credit risk as well as market
risk. It includes an app for automatic and manual binning of variables for credit
scorecards. It also includes simulation tools to analyze credit portfolio risk and
backtesting tools to evaluate Value-at-Risk (VaR).

Key Features

• Binning explorer app for developing credit scorecards
• Copula-based simulation tools for portfolios of credit instruments
• Value-at-Risk (VaR) backtesting models for assessing market risk
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 Risk Modeling with Risk Management Toolbox

Risk Modeling with Risk Management Toolbox

In this section...

“Consumer Credit Risk” on page 1-3
“Corporate Credit Risk” on page 1-3
“Market Risk” on page 1-5

Risk Management Toolbox provides tools for modeling three areas of risk assessment:

• Consumer credit risk
• Corporate credit risk
• Market risk

Consumer Credit Risk

Consumer credit risk  (also referred to as retail credit risk) is the risk of loss due to a
customer's default (non-repayment) on a consumer credit product. These products can
include a mortgage, unsecured personal loan, credit card, or overdraft. A common method
for predicting credit risk is through a credit scorecard. The scorecard is a statistically
based model for attributing a score to a customer that indicates the predicted probability
that the customer will default. The data used to calculate the score can be from sources
such as application forms, credit reference agencies, or products the customer already
holds with the lender. Financial Toolbox™ provides tools for creating credit scorecards
and performing credit portfolio analysis using scorecards. Risk Management Toolbox
includes a Binning Explorer app for automatic or manual binning to streamline the
binning phase of credit scorecard development. For more information, see “Overview of
Binning Explorer” on page 3-2.

Corporate Credit Risk

Corporate credit risk (also referred to as wholesale credit risk) is the risk that
counterparties default on their financial obligations. To assess this risk, the main
question to ask is, Given a current credit portfolio, how much can be lost in a given time
period due to defaults? In differing circumstances, the answer to this question might
mean:

• How much do you expect to lose?
• How likely is it that you will lose more than a specific amount?
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1 Getting Started

• What is the most you can lose under relatively normal circumstances?
• How much can you lose if things get bad?

Mathematically, these questions all depend on estimating a distribution of losses for the
credit portfolio: What are the different amounts you can lose, and how likely is it that you
lose each individual amount.

Corporate credit risk is fundamentally different from market risk, which is the risk
that assets lose value due to market movements. The most important difference is that
markets move all the time, but defaults occur infrequently. Therefore, the sample sizes
to support any modeling efforts are different. The challenge is to calibrate a distribution
of credit losses, because the sample sizes are small. For credit risk, even for an individual
bond that has not defaulted, you cannot collect direct data on what happens in the event
of default because it has not defaulted. And once the issuer actually defaults, unless you
can pool default information from similar companies, that is the only data point that you
have.

For corporate credit portfolio analysis, estimating credit correlations so that you can
understand the benefits of diversification is also challenging. Two companies can only
default in the same time window once, so you cannot collect data on how often they
default together. To collect more data, you can pool data from similar companies and
under somewhat similar economic conditions.

Risk Management Toolbox provides a simulation framework for credit portfolios, where
the three main elements of credit risk for a single instrument are:

• The probability of default (PD) which is the likelihood that the issuer defaults in a
given time period.

• The exposure at default (EAD) which is the amount of money that is at stake. For a
traditional bond, this is the bond principal.

• The loss given default (LGD) which is the fraction of the exposure that would be lost
at default. When default occurs, usually some money is recovered eventually.

The assumption is that these three quantities are fixed and known for all the companies
in the credit portfolio. With this assumption, the only uncertainty is whether each
company defaults, which happens with probability PDi.

At the credit portfolio level, however, the main question is, What are the default
correlations between issuers? For example, for two bonds with 10MM principal each,
the risk is different if you expect the companies to default together. In this scenario,
you could lose 20MM minus the recovery, all at once. Alternatively, if the defaults
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are independent, you could lose 10MM minus recovery if one defaults, but the other
company is likely still alive. Default correlations are therefore important parameters
for understanding the risk at a portfolio level. These parameters are also important for
understanding the diversification and concentration characteristics of the portfolio. The
approach in Risk Management Toolbox is to simulate correlated variables that can be
efficiently simulated and parameterized, then map the simulated values to default or
nondefault states to preserve the individual default probabilities. This approach is called
a copula. When normal variables are used, this approach is called a Gaussian copula. For
more information, see “Credit Simulation Using Copulas” on page 4-2.

Market Risk

Market risk is the risk of losses in positions arising from movements in market prices.
Value-at-risk is a statistical method that quantifies the risk level associated with a
portfolio. VaR measures the maximum amount of loss over a specified time horizon, at
a given confidence level. For example, if the 1-day 95% VaR of a portfolio is 10MM, then
there is a 95% chance that the portfolio loses less than 10MM the following day. In other
words, only 5% of the time (or about once in 20 days) the portfolio losses exceed 10MM.

Backtesting, on the other hand, measures how accurate the VaR calculations are. For
many portfolios, especially trading portfolios, VaR is computed daily. At the closing of
the following day, the actual profits and losses for the portfolio are known, and can be
compared to the VaR estimated the day before. You can use this daily data to assess the
performance of VaR models, which is the goal of VaR backtesting. As such, backtesting
is a method that looks retrospectively at data and refines the VaR models. Many VaR
backtesting methodologies have been proposed. As a best practice, use more than one
criterion to backtest the performance of VaR models, because all tests have strengths and
weaknesses.

Risk Management Toolbox provides the following VaR backtesting individual tests:

• Traffic light test (tl)
• Binomial test (bin)
• Kupiec’s tests (pof, tuff)
• Christoffersen’s tests (cc, cci)
• Haas’s tests (tbf, tbfi)

For information on the different tests, see “Overview of VaR Backtesting” on page
2-2.
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1 Getting Started

See Also
bin | cc | cci | confidenceBands | creditCopula | pof | portfolioRisk |
riskContribution | runtests | simulate | summary | tbf | tbfi | tl | tuff |
varbacktest

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Binning Explorer Case Study Example” on page 3-26
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-44
• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11
• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)
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• “Overview of VaR Backtesting” on page 2-2
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2 Market Risk Measurements Using VaR BackTesting Tools

Overview of VaR Backtesting

In this section...

“Binomial Test” on page 2-3
“Traffic Light Test” on page 2-3
“Kupiec’s POF and TUFF Tests” on page 2-4
“Christoffersen’s Interval Forecast Tests” on page 2-5
“Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6

Market risk is the risk of losses in positions arising from movements in market prices.
Value-at-risk (VaR) is one of the main measures of financial risk. VaR is an estimate of
how much value a portfolio can lose in a given time period with a given confidence level.
For example, if the 1-day 95% VaR of a portfolio is 10MM, then there is a 95% chance
that the portfolio loses less than 10MM the following day. In other words, only 5% of the
time (or about once in 20 days) the portfolio losses exceed 10MM.

For many portfolios, especially trading portfolios, VaR is computed daily. At the closing
of the following day, the actual profits and losses for the portfolio are known and can be
compared to the VaR estimated the day before. You can use this daily data to assess the
performance of VaR models, which is the goal of VaR backtesting. The performance of
VaR models can be measured in different ways. In practice, many different metrics and
statistical tests are used to identify VaR models that are performing poorly or performing
better. As a best practice, use more than one criterion to backtest the performance of VaR
models, because all tests have strengths and weaknesses.

Suppose that you have VaR limits and corresponding returns or profits and losses for
days t = 1,…,N. Use VaRt to denote the VaR estimate for day t (determined on day t
− 1). Use Rt to denote the actual return or profit and loss observed on day t. Profits
and losses are expressed in monetary units and represent value changes in a portfolio.
The corresponding VaR limits are also given in monetary units. Returns represent the
change in portfolio value as a proportion (or percentage) of its value on the previous day.
The corresponding VaR limits are also given as a proportion (or percentage). The VaR
limits must be produced from existing VaR models. Then, to perform a VaR backtesting
analysis, provide these limits and their corresponding returns as data inputs to the VaR
backtesting tools in Risk Management Toolbox.

The toolbox supports these VaR backtests:

• Binomial test

2-2



 Overview of VaR Backtesting

• Traffic light test
• Kupiec’s tests
• Christoffersen’s tests
• Haas’s tests

Binomial Test

The most straightforward test is to compare the observed number of exceptions, x, to
the expected number of exceptions. From the properties of a binomial distribution,
you can build a confidence interval for the expected number of exceptions. Using exact
probabilities from the binomial distribution or a normal approximation, the bin function
uses a normal approximation. By computing the probability of observing x exceptions,
you can compute the probability of wrongly rejecting a good model when x exceptions
occur. This is the p-value for the observed number of exceptions x. For a given test
confidence level, a straightforward accept-or-reject result in this case is to fail the VaR
model whenever x is outside the test confidence interval for the expected number of
exceptions. “Outside the confidence interval” can mean too many exceptions, or too few
exceptions. Too few exceptions might be a sign that the VaR model is too conservative.

The test statistic is

Z
x Np

Np p
bin =

-

-( )1

where x is the number of failures, N is the number of observations, and p = 1 – VaR level.
The binomial test is approximately distributed as a standard normal distribution.

For more information, see Bibliography for Jorion and bin.

Traffic Light Test

A variation on the binomial test proposed by the Basel Committee is the traffic light test
or three zones test. For a given number of exceptions x, you can compute the probability
of observing up to x exceptions. That is, any number of exceptions from 0 to x, or the
cumulative probability up to x. The probability is computed using a binomial distribution.
The three zones are defined as follows:
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2 Market Risk Measurements Using VaR BackTesting Tools

• The “red” zone starts at the number of exceptions where this probability equals or
exceeds 99.99%. It is unlikely that too many exceptions will come from a correct VaR
model.

• The “yellow” zone covers the number of exceptions where the probability equals
or exceeds 95% but is smaller than 99.99%. Even though there high number of
violations, the violation count is not exceedingly high.

• Everything below the yellow zone is "green." If you have too few failures, they fall in
the green zone. Only too many failures lead to model rejections.

For more information, see Bibliography for Basel Committee on Banking Supervision and
tl.

Kupiec’s POF and TUFF Tests

Kupiec (1995) introduced a variation on the binomial test called the proportion of failures
(POF) test. The POF test works with the binomial distribution approach. In addition,
it uses a likelihood ratio to test whether the probability of exceptions is synchronized
with the probability p implied by the VaR confidence level. If the data suggests that the
probability of exceptions is different than p, the VaR model is rejected. The POF test
statistic is

LR
p p

x

N

x

N

POF

N x x

N x x
= -

-( )
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Á

ˆ
¯
˜
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Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

-

-
2

1

1

log

where x is the number of failures, N the number of observations and p = 1 – VaR level.

This statistic is asymptotically distributed as a chi square variable with one degree of
freedom. The VaR model fails the test if this likelihood ratio exceeds a critical value. The
critical value depends on the test confidence level.

Kupiec also proposed a second test called the time until first failure (TUFF). The TUFF
test looks at when the first rejection occurred. If it happens too soon, the test fails the
VaR model. Checking only the first exception leaves much information out, specifically,
whatever happened after the first exception is ignored. The TBFI test extends the TUFF
approach to include all the failures. See tbfi.
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The TUFF test is also based on a likelihood ratio, but the underlying distribution is
a geometric distribution. If n is the number of days until the first rejection, the test
statistic is given by

LR
p p

n n

TUFF

n

n
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This statistic is asymptotically distributed as a chi square variable with one degree of
freedom. For more information, see Bibliography for Kupiec, pof, and tuff.

Christoffersen’s Interval Forecast Tests

Christoffersen (1998) proposed a test to measure whether the probability of observing
an exception on a particular day depends on whether an exception occurred. Unlike
the unconditional probability of observing an exception, Christoffersen's test measures
the dependency between consecutive days only. The test statistic for independence in
Christoffersen’s interval forecast (IF) approach is given by

LRCCI
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where

• n00 = Number of periods with no failures followed by a period with no failures.
• n10 = Number of periods with failures followed by a period with no failures.
• n01 = Number of periods with no failures followed by a period with failures.
• n11 = Number of periods with failures followed by a period with failures.

and

• π0 — Probability of having a failure on period t, given that no failure occurred on
period t − 1 = n01 / (n00 + n01)

• π1 — Probability of having a failure on period t, given that a failure occurred on period
t − 1 = n11 / (n10 + n11)

• π — Probability of having a failure on period t = (n01 + n11 / (n00 + n01 + n10 + n11)
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2 Market Risk Measurements Using VaR BackTesting Tools

This statistic is asymptotically distributed as a chi square with one degree of freedom.
You can combine this statistic with the frequency POF test to get a conditional coverage
(CC) mixed test:

LRCC = LRPOF + LRCCI

This test is asymptotically distributed as a chi square variable with two degrees of
freedom.

For more information, see Bibliography for Christoffersen, cc, and cci.

Haas’s Time Between Failures or Mixed Kupiec’s Test

Haas (2001) extended Kupiec’s TUFF test to incorporate the time information between
all the exceptions in the sample. Haas’s test applies the TUFF test to each exception in
the sample and aggregates the time between failures (TBF) test statistic.

LR
p p
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In this statistic, p = 1 – VaR level and ni is the number of days between failures i-1 and i
(or until the first exception for i = 1). This statistic is asymptotically distributed as a chi
square variable with x degrees of freedom, where x is the number of failures.

Like Christoffersen’s test, you can combine this test with the frequency POF test to get a
TBF mixed test, sometimes called Haas’ mixed Kupiec’s test:

LR LR LRTBF POF TBFI= +

This test is asymptotically distributed as a chi square variable with x+1 degrees of
freedom. For more information, see Bibliography for Haas, tbf, and tbfi.
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See Also
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Related Examples
• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
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VaR Backtesting Workflow

This example shows a value-at-risk (VaR) backtesting workflow and the use of VaR
backtesting tools. For a more comprehensive example of VaR backtesting, see “Value-at-
Risk Estimation and Backtesting”.

Step 1. Load the VaR backtesting data.

Use the VaRBacktestData.mat file to load the VaR data into the workspace. This
example works with the EquityIndex, Normal95, and Normal99 numeric arrays. These
arrays are equity returns and the corresponding VaR data at 95% and 99% confidence
levels is produced with a normal distribution (a variance-covariance approach). See
“Value-at-Risk Estimation and Backtesting” for an example on how to generate this VaR
data.

load('VaRBacktestData')

disp([EquityIndex(1:5) Normal95(1:5) Normal99(1:5)])

   -0.0043    0.0196    0.0277

   -0.0036    0.0195    0.0276

   -0.0000    0.0195    0.0275

    0.0298    0.0194    0.0275

    0.0023    0.0197    0.0278

The first column shows three losses in the first three days, but none of these losses
exceeds the corresponding VaR (columns 2 and 3). The VaR model fails whenever the loss
(negative of returns) exceeds the VaR.

Step 2. Generate a VaR backtesting plot.

Use the plot function to visualize the VaR backtesting data. This type of visualization is
a common first step when performing a VaR backtesting analysis.

plot(Date,[EquityIndex -Normal95 -Normal99])

title('VaR Backtesting')

xlabel('Date')

ylabel('Returns')

legend('Returns','VaR 95%','VaR 99%')
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Step 3. Create a varbacktest object.

Create a varbacktest object for the equity returns and the VaRs at 95% and 99%
confidence levels.

vbt = varbacktest(EquityIndex,[Normal95 Normal99],...

   'PortfolioID','S&P', ...

   'VaRID',{'Normal95' 'Normal99'}, ...

   'VaRLevel',[0.95 0.99]);

disp(vbt)

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×2 double]
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2 Market Risk Measurements Using VaR BackTesting Tools

      PortfolioID: "S&P"

            VaRID: ["Normal95"    "Normal99"]

         VaRLevel: [0.9500 0.9900]

Step 4. Run a summary report.

Use the summary function to obtain a summary for the number of observations, the
number of failures, and other simple metrics.

summary(vbt)

ans = 

    PortfolioID      VaRID       VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing

    ___________    __________    ________    _____________    ____________    ________    ________    ______    ____________    _______

    "S&P"          "Normal95"    0.95        0.94535          1043            57          52.15        1.093     58             0      

    "S&P"          "Normal99"    0.99         0.9837          1043            17          10.43       1.6299    173             0      

Step 5. Run all tests.

Use the runtests function to display the final test results all at once.

runtests(vbt)

ans = 

    PortfolioID      VaRID       VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    __________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "S&P"          "Normal95"    0.95        green     accept    accept    accept    accept    accept    reject    reject

    "S&P"          "Normal99"    0.99        yellow    reject    accept    accept    accept    accept    accept    accept

Step 6. Run individual tests.

After running all tests, you can investigate the details of particular tests. For example,
use the tl function to run the traffic light test.

tl(vbt)
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ans = 

    PortfolioID      VaRID       VaRLevel      TL      Probability     TypeI     Increase    Observations    Failures

    ___________    __________    ________    ______    ___________    _______    ________    ____________    ________

    "S&P"          "Normal95"    0.95        green     0.77913        0.26396          0     1043            57      

    "S&P"          "Normal99"    0.99        yellow    0.97991        0.03686    0.26582     1043            17      

Step 7. Create VaR backtests for multiple portfolios.

You can create VaR backtests for different portfolios, or the same portfolio over different
time windows. Run tests over two different subwindows of the original test window.

Ind1 = year(Date)<=2000;

Ind2 = year(Date)>2000;

vbt1 = varbacktest(EquityIndex(Ind1),[Normal95(Ind1,:) Normal99(Ind1,:)],...

   'PortfolioID','S&P, 1999-2000',...

   'VaRID',{'Normal95' 'Normal99'},...

   'VaRLevel',[0.95 0.99]);

vbt2 = varbacktest(EquityIndex(Ind2),[Normal95(Ind2,:) Normal99(Ind2,:)],...

   'PortfolioID','S&P, 2001-2002',...

   'VaRID',{'Normal95' 'Normal99'},...

   'VaRLevel',[0.95 0.99]);

Step 8. Display a summary report for both portfolios.

Use the summary function to display a summary for both portfolios.

Summary = [summary(vbt1); summary(vbt2)];

disp(Summary)

      PortfolioID         VaRID       VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing

    ________________    __________    ________    _____________    ____________    ________    ________    ______    ____________    _______

    "S&P, 1999-2000"    "Normal95"    0.95        0.94626          521             28          26.05       1.0749     58             0      

    "S&P, 1999-2000"    "Normal99"    0.99        0.98464          521              8           5.21       1.5355    173             0      

    "S&P, 2001-2002"    "Normal95"    0.95        0.94444          522             29           26.1       1.1111     35             0      

    "S&P, 2001-2002"    "Normal99"    0.99        0.98276          522              9           5.22       1.7241     45             0      

Step 9. Run all tests for both portfolios.

Use the runtests function to display the final test result for both portfolios.
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Results = [runtests(vbt1);runtests(vbt2)];

disp(Results)

      PortfolioID         VaRID       VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ________________    __________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "S&P, 1999-2000"    "Normal95"    0.95        green     accept    accept    accept    accept    accept    reject    reject

    "S&P, 1999-2000"    "Normal99"    0.99        green     accept    accept    accept    accept    accept    accept    accept

    "S&P, 2001-2002"    "Normal95"    0.95        green     accept    accept    accept    accept    accept    accept    accept

    "S&P, 2001-2002"    "Normal99"    0.99        yellow    accept    accept    accept    accept    accept    accept    accept

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff |
varbacktest

Related Examples
• “Overview of VaR Backtesting” on page 2-2
• “Value-at-Risk Estimation and Backtesting” on page 2-13

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
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Value-at-Risk Estimation and Backtesting

This example shows how to estimate the value-at-risk (VaR) using three methods, and
how to perform a VaR backtesting analysis. The three methods are:

1 Normal distribution
2 Historical simulation
3 Exponential weighted moving average (EWMA)

Value-at-risk is a statistical method that quantifies the risk level associated with a
portfolio. The VaR measures the maximum amount of loss over a specified time horizon
and at a given confidence level.

Backtesting measures the accuracy the VaR calculations. Using VaR methods, the loss
forecast is calculated and then compared to the actual losses at the end of the next day.
The degree of difference between the predicted and actual losses indicates whether the
VaR model is underestimating or overestimating the risk. As such, backtesting looks
retrospectively at data and helps to assess the VaR model.

The three estimation methods used in this example estimate the VaR at 95% and 99%
confidence levels.

Load the Data and Define the Test Window

Load the data. The data used in this example is from a time series of returns on the S&P
index between 1993 and 2003.

load VaRExampleData.mat

Returns = diff(sp)./sp(1:end-1);

DateReturns = dates(2:end);

SampleSize = length(Returns);

Define the estimation window as 250 trading days. The test window starts on the first
day in 1996 and runs through the end of the sample.

TestWindowStart      = find(year(DateReturns)==1996,1);

TestWindow           = TestWindowStart : SampleSize;

EstimationWindowSize = 250;

For a VaR confidence level of 95% and 99%, set the complement of the VaR level.

pVaR = [0.05 0.01];
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These values mean that there is at most a 5% and 1% probability, respectively, that
the loss incurred will be greater than the maximum threshold (that is, greater than the
VaR).

Compute the VaR Using the Normal Distribution Method

For the normal distribution method, assume that the profit and loss of the portfolio is
normally distributed. Using this assumption, compute the VaR by multiplying the z-
score, at each confidence level by the standard deviation of the returns. Because VaR
backtesting looks retrospectively at data, the VaR "today" is computed based on values of
the returns in the last N = 250 days leading to, but not including, "today."

Zscore   = norminv(pVaR);

Normal95 = zeros(length(TestWindow),1);

Normal99 = zeros(length(TestWindow),1);

for t = TestWindow

    i = t - TestWindowStart + 1;

    EstimationWindow = t-EstimationWindowSize:t-1;

    Sigma = std(Returns(EstimationWindow));

    Normal95(i) = -Zscore(1)*Sigma;

    Normal99(i) = -Zscore(2)*Sigma;

end

figure;

plot(DateReturns(TestWindow),[Normal95 Normal99])

xlabel('Date')

ylabel('VaR')

legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')

title('VaR Estimation Using the Normal Distribution Method')
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The normal distribution method is also known as parametric VaR because its estimation
involves computing a parameter for the standard deviation of the returns. The advantage
of the normal distribution method is its simplicity. However, the weakness of the normal
distribution method is the assumption that returns are normally distributed. Another
name for the normal distribution method is the variance-covariance approach.

Compute the VaR Using the Historical Simulation Method

Unlike the normal distribution method, the historical simulation (HS) is a nonparametric
method. It does not assume a particular distribution of the asset returns. Historical
simulation forecasts risk by assuming that past profits and losses can be used as the
distribution of profits and losses for the next period of returns. The VaR "today" is
computed as the p th-quantile of the last N returns prior to "today."
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Historical95 = zeros(length(TestWindow),1);

Historical99 = zeros(length(TestWindow),1);

for t = TestWindow

    i = t - TestWindowStart + 1;

    EstimationWindow = t-EstimationWindowSize:t-1;

    X = Returns(EstimationWindow);

    Historical95(i) = -quantile(X,pVaR(1));

    Historical99(i) = -quantile(X,pVaR(2));

end

figure;

plot(DateReturns(TestWindow),[Historical95 Historical99])

ylabel('VaR')

xlabel('Date')

legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')

title('VaR Estimation Using the Historical Simulation Method')
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The preceding figure shows that the historical simulation curve has a piecewise constant
profile. The reason for this is that quantiles do not change for several days until extreme
events occur. Thus, the historical simulation method is slow to react to changes in
volatility.

Compute the VaR Using the Exponential Weighted Moving Average Method (EWMA)

The first two VaR methods assume that all past returns carry the same weight. The
exponential weighted moving average (EWMA) method assigns nonequal weights,
particularly exponentially decreasing weights. The most recent returns have higher
weights because they influence "today's" return more heavily than returns further in the
past. The formula for the EWMA variance over an estimation window of size  is:
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where  is a normalizing constant:

For convenience, we assume an infinitely large estimation window to approximate the
variance:

A value of the decay factor frequently used in practice is 0.94. This is the value used in
this example. For more information, see References.

Initiate the EWMA using a warm-up phase to set up the standard deviation.

Lambda = 0.94;

Sigma2     = zeros(length(Returns),1);

Sigma2(1)  = Returns(1)^2;

for i = 2 : (TestWindowStart-1)

    Sigma2(i) = (1-Lambda) * Returns(i-1)^2 + Lambda * Sigma2(i-1);

end

Use the EWMA in the test window to estimate the VaR.

Zscore = norminv(pVaR);

EWMA95 = zeros(length(TestWindow),1);

EWMA99 = zeros(length(TestWindow),1);

for t = TestWindow

    k     = t - TestWindowStart + 1;

    Sigma2(t) = (1-Lambda) * Returns(t-1)^2 + Lambda * Sigma2(t-1);

    Sigma = sqrt(Sigma2(t));

    EWMA95(k) = -Zscore(1)*Sigma;

    EWMA99(k) = -Zscore(2)*Sigma;

end
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figure;

plot(DateReturns(TestWindow),[EWMA95 EWMA99])

ylabel('VaR')

xlabel('Date')

legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')

title('VaR Estimation Using the EWMA Method')

In the preceding figure, the EWMA reacts very quickly to periods of large (or small)
returns.

VaR Backtesting

In the first part of this example, VaR was estimated over the test window with
three different methods and at two different VaR confidence levels. The goal of VaR
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backtesting is to evaluate the performance of VaR models. A VaR estimate at 95%
confidence is violated only about 5% of the time, and VaR failures do not cluster.
Clustering of VaR failures indicates the lack of independence across time because the
VaR models are slow to react to changing market conditions.

A common first step in VaR backtesting analysis is to plot the returns and the VaR
estimates together. Plot all three methods at the 95% confidence level and compare them
to the returns.

ReturnsTest = Returns(TestWindow);

DatesTest   = DateReturns(TestWindow);

figure;

plot(DatesTest,[ReturnsTest -Normal95 -Historical95 -EWMA95])

ylabel('VaR')

xlabel('Date')

legend({'Returns','Normal','Historical','EWMA'},'Location','Best')

title('Comparison of returns and VaR at 95% for different models')
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To highlight how the different approaches react differently to changing market
conditions, you can zoom in on the time series where there is a large and sudden change
in the value of returns. For example, around August 1998:

ZoomInd   = (DatesTest >= '5-Aug-1998') & (DatesTest <= '31-Oct-1998');

VaRData   = [-Normal95(ZoomInd) -Historical95(ZoomInd) -EWMA95(ZoomInd)];

VaRFormat = {'-','--','-.'};

figure;

bar(datenum(DatesTest(ZoomInd)),ReturnsTest(ZoomInd),'FaceColor',[0.6 0.6 0.6]);

hold on

for i = 1 : size(VaRData,2)

    stairs(datenum(DatesTest(ZoomInd))-0.5,VaRData(:,i),VaRFormat{i});

end

ylabel('VaR')
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xlabel('Date')

legend({'Returns','Normal','Historical','EWMA'},'Location','Best','AutoUpdate','Off')

title('95% VaR violations for different models')

datetick('x','keeplimits');

A VaR failure or violation happens when the returns have a negative VaR. A closer look
around August 27th to August 31st shows a significant dip in the returns. On the dates
starting from August 27th onward, the EWMA follows the trend of the returns closely
and more accurately. Consequently, EWMA has fewer VaR violations (two) compared to
the normal distribution approach (seven violations) or the historical simulation method
(eight violations).

Besides visual tools, you can use statistical tests for VaR backtesting. In Risk
Management Toolbox™, a varbacktest object supports multiple statistical tests for
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VaR backtesting analysis. In this example, start by comparing the different test results
for the normal distribution approach at the 95% and 99% VaR levels.

vbt = varbacktest(ReturnsTest,[Normal95 Normal99],'PortfolioID','S&P','VaRID',...

    {'Normal95','Normal99'},'VaRLevel',[0.95 0.99]);

summary(vbt)

ans = 

    PortfolioID      VaRID       VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing

    ___________    __________    ________    _____________    ____________    ________    ________    ______    ____________    _______

    "S&P"          "Normal95"    0.95        0.94863          1966            101          98.3       1.0275    7               0      

    "S&P"          "Normal99"    0.99        0.98372          1966             32         19.66       1.6277    7               0      

The summary report shows that the observed level is close enough to the defined VaR
level. The 95% and 99% VaR levels have at most (1-VaR_level) x N expected failures,
where N is the number of observations. The failure ratio shows that the Normal95 VaR
level is within range, whereas the Normal99 VaR Level is imprecise and under-forecasts
the risk. To run all tests supported in varbacktest, use runtests.

runtests(vbt)

ans = 

    PortfolioID      VaRID       VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    __________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "S&P"          "Normal95"    0.95        green     accept    accept    accept    accept    reject    reject    reject

    "S&P"          "Normal99"    0.99        yellow    reject    reject    accept    reject    accept    reject    reject

The 95% VaR passes the frequency tests, such as traffic light, binomial and proportion of
failures tests (TL, Bin, and POF columns. The 99% VaR does not pass these same tests,
as indicated by the yellow and reject results. Both confidence levels got rejected in
the conditional coverage independence, and time between failures independence (CCI
and TBFI columns. This result suggests that the VaR violations are not independent,
and there are probably periods with multiple failures in a short span. Also, one failure
may make it more likely that other failures will follow in subsequent days. For more
information on the tests methodologies and the interpretation of results, see varbacktest
and the individual tests.
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Using a varbacktest object, run the same tests on the portfolio for the three
approaches at both VaR confidence levels.

vbt = varbacktest(ReturnsTest,[Normal95 Historical95 EWMA95 Normal99 Historical99 ...

    EWMA99],'PortfolioID','S&P','VaRID',{'Normal95','Historical95','EWMA95',...

    'Normal99','Historical99','EWMA99'},'VaRLevel',[0.95 0.95 0.95 0.99 0.99 0.99]);

runtests(vbt)

ans = 

    PortfolioID        VaRID         VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    ______________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "S&P"          "Normal95"        0.95        green     accept    accept    accept    accept    reject    reject    reject

    "S&P"          "Historical95"    0.95        yellow    accept    accept    accept    accept    accept    reject    reject

    "S&P"          "EWMA95"          0.95        green     accept    accept    accept    accept    accept    reject    reject

    "S&P"          "Normal99"        0.99        yellow    reject    reject    accept    reject    accept    reject    reject

    "S&P"          "Historical99"    0.99        yellow    reject    reject    accept    reject    accept    reject    reject

    "S&P"          "EWMA99"          0.99        red       reject    reject    accept    reject    accept    reject    reject

The results are similar to the previous results, and at the 95% level, the frequency
results are generally acceptable. However, the frequency results at the 99% level are
generally rejections. Regarding independence, most tests pass the conditional coverage
independence test (cci), which tests for independence on consecutive days. Notice that
all tests fail the time between failures independence test (tbfi), which takes into account
the times between all failures. This result suggests that all methods have issues with the
independence assumption.

To better understand how these results change given market conditions, look at the years
2000 and 2002 for the 95% VaR confidence level.

Ind2000 = (year(DatesTest) == 2000);

vbt2000 = varbacktest(ReturnsTest(Ind2000),[Normal95(Ind2000) Historical95(Ind2000) EWMA95(Ind2000)],...

   'PortfolioID','S&P, 2000','VaRID',{'Normal','Historical','EWMA'});

runtests(vbt2000)

ans = 

    PortfolioID       VaRID        VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    ____________    ________    _____    ______    ______    ______    ______    ______    ______    ______
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    "S&P, 2000"    "Normal"        0.95        green    accept    accept    accept    accept    accept    accept    accept

    "S&P, 2000"    "Historical"    0.95        green    accept    accept    accept    accept    accept    accept    accept

    "S&P, 2000"    "EWMA"          0.95        green    accept    accept    accept    accept    accept    accept    accept

Ind2002 = (year(DatesTest) == 2002);

vbt2002 = varbacktest(ReturnsTest(Ind2002),[Normal95(Ind2002) Historical95(Ind2002) EWMA95(Ind2002)],...

   'PortfolioID','S&P, 2002','VaRID',{'Normal','Historical','EWMA'});

runtests(vbt2002)

ans = 

    PortfolioID       VaRID        VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    ____________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "S&P, 2002"    "Normal"        0.95        yellow    reject    reject    accept    reject    reject    reject    reject

    "S&P, 2002"    "Historical"    0.95        yellow    reject    accept    accept    reject    reject    reject    reject

    "S&P, 2002"    "EWMA"          0.95        green     accept    accept    accept    accept    reject    reject    reject

For the year 2000, all three methods pass all the tests. However, for the year 2002, the
test results are mostly rejections for all methods. The EWMA method seems to perform
better in 2002, yet all methods fail the independence tests.

To get more insight into the independence tests, look into the conditional coverage
independence (cci) and the time between failures independence (tbfi) test details for the
year 2002. To access the test details for all tests, run the individual test functions.

cci(vbt2002)

ans = 

    PortfolioID       VaRID        VaRLevel     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00    N10    N01    N11    TestLevel

    ___________    ____________    ________    ______    _________    _________    ____________    ________    ___    ___    ___    ___    _________

    "S&P, 2002"    "Normal"        0.95        reject    12.591       0.0003877    261             21          225    14     14     7      0.95     

    "S&P, 2002"    "Historical"    0.95        reject    6.3051        0.012039    261             20          225    15     15     5      0.95     

    "S&P, 2002"    "EWMA"          0.95        reject    4.6253        0.031504    261             14          235    11     11     3      0.95     

In the CCI test, the probability p 01 of having a failure at time t, knowing that there was
no failure at time t-1 is given by
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The probability p 11 of having a failure at time t, knowing that there was failure at time
t-1 is given by

From the N00, N10, N01, N11 columns in the test results, the value of p 01 is at around
5% for the three methods, yet the values of p 11 are above 20%. Because there is evidence
that a failure is followed by another failure much more frequently than 5% of the time,
this CCI test fails.

In the time between failures independence test, look at the minimum, maximum,
andquartiles of the distribution of times between failures, in the columns TBFMin,
TBFQ1, TBFQ2, TBFQ3, TBFMax.

tbfi(vbt2002)

ans = 

    PortfolioID       VaRID        VaRLevel     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel

    ___________    ____________    ________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________

    "S&P, 2002"    "Normal"        0.95        reject    53.936        0.00010087    261             21          1           1        5      17       48        0.95     

    "S&P, 2002"    "Historical"    0.95        reject    45.274         0.0010127    261             20          1         1.5      5.5      17       48        0.95     

    "S&P, 2002"    "EWMA"          0.95        reject    25.756          0.027796    261             14          1           4      7.5      20       48        0.95     

For a VaR level of 95%, you expect an average time between failures of 20 days, or one
failure every 20 days. However, the median of the time between failures for the year 2002
ranges between 5 and 7.5 for the three methods. This result suggests that half of the
time, two consecutive failures occur within 5 to 7 days, much more frequently than the 20
expected days. Consequently, more test failures occur. For the normal method, the first
quartile is 1, meaning that 25% of the failures occur on consecutive days.
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See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff |
varbacktest

Related Examples
• “Overview of VaR Backtesting” on page 2-2
• “VaR Backtesting Workflow” on page 2-8

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
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Overview of Binning Explorer

The Binning Explorer app enables you to interactively bin credit scorecard data. Use
the Binning Explorer to:

• Select an automatic binning algorithm.
• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

Binning Explorer complements the overall workflow for developing a credit scorecard
model.

Using Binning Explorer:

1. Open the Binning Explorer app.

• MATLAB® Toolstrip: On the Apps tab, under Computational Finance, click
the app icon.

• MATLAB Command prompt: Enter binningExplorer.
2. Import the data into the app.

You can import data into Binning Explorer by either starting directly from a
data set or by loading an existing creditscorecard object from the MATLAB
workspace.

3. Use Binning Explorer to work interactively with the binning assignments for a
scorecard.

4. Export the scorecard to a new creditscorecard object.

Continue the workflow from the MATLAB command line using creditscorecard
object functions from Financial Toolbox. For more information, see creditscorecard.

Using creditscorecard Object Functions in Financial Toolbox:
5. Fit a logistic regression model.
6. Review and format the credit scorecard points.
7. Score the data.
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Using Binning Explorer:

8. Calculate the probabilities of default for the data.
9. Validate the quality of the credit scorecard model.

For more detailed information on this workflow, see “Binning Explorer Case Study
Example” on page 3-26.

See Also

Apps
Binning Explorer

Functions
creditscorecard

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Binning Explorer Case Study Example” on page 3-26
• “Case Study for a Credit Scorecard Analysis”

More About
• “Credit Scorecard Modeling Workflow”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)

3-3

http://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-120558.html


3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

Common Binning Explorer Tasks

The Binning Explorer app supports the following tasks:

In this section...

“Import Data” on page 3-4
“Change Predictor Type” on page 3-5
“Change Binning Algorithm for One or More Predictors” on page 3-6
“Change Algorithm Options for Binning Algorithms” on page 3-7
“Split Bins for a Numeric Predictor” on page 3-11
“Split Bins for a Categorical Predictor” on page 3-12
“Manual Binning to Merge Bins for a Numeric or Categorical Predictor” on page 3-14
“Change Bin Boundaries for a Single Predictor” on page 3-16
“Change Bin Boundaries for Multiple Predictors” on page 3-17
“Set Options for Display” on page 3-19
“Export and Save the Binning” on page 3-20
“Troubleshoot the Binning” on page 3-20

Import Data

Binning Explorer enables you to import data by either starting directly from the data
stored in a MATLAB table or by loading an existing creditscorecard object.

Clean Start from Data

To start directly from data for a credit scorecard:

1 Place the credit scorecard data in your MATLAB workspace. The data must be in
a MATLAB table, where each column of data can be any one of the following data
types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
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• Categorical

In addition, the table must contain a binary response variable.
2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under

Computational Finance, click the app icon.
3 Select the data from the Step 1 pane of the Import Data window.
4 From the Step 2 pane, set the Variable Type for each of the predictors, as needed.
5 From the Step 3 pane, select an initial binning algorithm and click Import Data.

The bins are plotted and displayed for each predictor. By clicking an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes.

Start from an Existing creditscorecard Object

To start using an existing creditscorecard object:

1 Place the creditscorecard object in your MATLAB workspace. Create the
creditscorecard object either by using the creditscorecard function or by
clicking Export in the Binning Explorer to export and save a creditscorecard
object to the MATLAB workspace.

2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under
Computational Finance, click the app icon.

3 From Step 1 pane of the Import Data window, select the creditscorecard object.
4 From the Step 3 pane, select a binning algorithm. When using an existing

creditscorecard object, it is recommended to select the No Binning option. To
display the predictor plots, click Import Data.

The bins are plotted and displayed for each predictor. By clicking an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes.

Change Predictor Type

After you import data or a creditscorecard object into Binning Explorer, you can
change the predictor type.

1 Click any predictor plot. The name of the selected predictor displays on the Binning
Explorer toolbar under Selected Predictor.
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On the Binning Explorer toolbar, the predictor type for the selected predictor
displays under Predictor Type.

2 To change the predictor type, under Predictor Type, select: Numeric,
Categorical, or Ordinal. The predictor plot is updated for a change in the
predictor type and the details in the Bin Information and Predictor Information
panes are also updated.

Change Binning Algorithm for One or More Predictors

After you import data or a creditscorecard object into Binning Explorer, you can
change the binning algorithm for an individual predictor or for multiple predictors.

1 Click any predictor plot. The selected predictor plot displays with a blue outline.

Tip When you select a predictor plot with the blue outline, a status message appears
at the bottom of the Binning Explorer that displays the last binning information
for that predictor. Use this information to determine which binning algorithm is
most recently applied to an individual predictor plot.

2 On the Binning Explorer toolbar, under Apply Monotone, select Monotone,
Equal Frequency, or Equal Width. The predictor plot is updated with a change of
algorithm. The details in the Bin Information and Predictor Information panes
are also updated.

3 To change the binning algorithm for multiple predictors, multiselect more than
one predictor plot by using Ctrl + click to highlight each predictor plot with a blue
outline.
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4 Under Apply Monotone, select Monotone, Equal Frequency, or Equal Width.
All the selected predictor plots are updated for a change of algorithm.

Change Algorithm Options for Binning Algorithms

After you import data or a creditscorecard object into Binning Explorer, you can
change can change the binning algorithm for an individual predictor or for multiple
predictors.

1 Click any predictor plot. The predictor plot displays with a blue outline.

Tip When you select a predictor plot with the blue outline, a status message appears
at the bottom of the Binning Explorer that displays the last binning information
for that predictor. Use this information to determine which binning algorithm is
most recently applied to an individual predictor plot.
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2 On the Binning Explorer toolbar, click Algorithm Options to open the Algorithm
Options dialog box.

3 From the Algorithm Options dialog box, select an Algorithm name:

• Monotone

• For Initial number of bins, enter an initial number of bins (default is 10).
The initial number of bins must be an integer > 2. Used for numeric predictors
only.

• For Trend, select one of the following:

• Auto (default) — Automatically determines if the WOE trend is
increasing or decreasing.

• Increasing — Looks for an increasing WOE trend.
• Decreasing — Looks for a decreasing WOE trend.

The value of Trend does not necessarily reflect that of the resulting WOE
curve. The Trend option tells the algorithm to look for an increasing or
decreasing trend, but the outcome might not show the desired trend. For
example, the algorithm cannot find a decreasing trend when the data actually
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has an increasing WOE trend. For more information on the Trend option, see
“Monotone”.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the

total number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm.

Note: Category Sorting can only be used with categorical predictors.

• Equal Frequency

• For Number of bins, enter the number of bins. The default is 5, and the
number of bins must be a positive number.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the

total number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm.

Note: You can use Category Sorting with categorical predictors only.

• Equal Width
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• For Number of bins, enter the number of bins. The default is 5 and the
number of bins must be a positive number.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the

total number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm.

Note: You can use Category Sorting with categorical predictors only.

Click OK. The predictor plot is updated with the change of algorithm. The details in
the Bin Information and Predictor Information panes are also updated.

4 To change the binning algorithm for multiple predictors, multiselect more than
one predictor plot by using Ctrl+ click to highlight each predictor plot with a blue
outline.

5 On the Binning Explorer toolbar, click Algorithm Options to open the Algorithm
Options dialog box. Make your selection from the Algorithm Options dialog box and
click OK. The selected predictor plots are updated for the change of algorithm.
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Split Bins for a Numeric Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
split bins for a numeric predictor.

1 Click any numeric predictor plot. The predictor plot displays with a blue outline.

2 On the Binning Explorer toolbar, click Manual Binning to open the selected
numeric predictor in a new tabbed window.

3 Click a bin to enable the Split button for that bin.

Note: The Split button is enabled when the data range of the selected bin has more
than one value.

4 On the Binning Explorer toolbar, the Edges text boxes display values for the
edges of the selected bin. Click Split to open the Split dialog box.
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5 Use the Number of bins control to split the selected bin into multiple bins. Click
OK to complete the split operation.

The plot for the selected numeric predictor is updated with the new bin information.
The details in the Bin Information and Predictor Information panes are also
updated.

Split Bins for a Categorical Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
split bins for a categorical predictor.

1 Click any categorical predictor plot. The predictor plot displays with a blue outline.
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2 On the Binning Explorer toolbar, click Manual Binning to open the selected
categorical predictor in a new tabbed window.

3 Click a bin to enable the Split button for that bin.

Note: The Split button is enabled when the selected bin has more than one category
in it.
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Use the Number of bins control to split the selected bin into multiple bins.

Use the arrow controls on the Split dialog box to control the contents for each of the
bins that you are splitting the selected bin into.

4 Click OK to complete the split operation.

The plot for the selected categorical predictor is updated with the new bin
information. The details in the Bin Information and Predictor Information
panes are also updated.

Manual Binning to Merge Bins for a Numeric or Categorical Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
split or merge bins for a predictor.

1 Click any predictor plot. The predictor plot displays with a blue outline.
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2 On the Binning Explorer toolbar, click Manual Binning to open the selected
predictor in a new tabbed window.

Note: The Merge button is active only when more than one bin is selected. Only
adjacent bins can be merged for numeric or ordinal predictors. Nonadjacent bins can
be merged for categorical predictors.

3 To merge bins, select two or more bins for merging by using Ctrl + click to
multiselect bins to display with blue outlines.

When performing a merge with a numeric predictor, the Edges text boxes on the
Binning Explorer toolbar display the values for the edges of the selected bins to
merge.

3-15



3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

4 Click Merge to complete the merge operation. The plot for the selected predictor
is updated with the new bin information. The details in the Bin Information and
Predictor Information panes are also updated.

Change Bin Boundaries for a Single Predictor

After you import data or a creditscorecard object into Binning Explorer, you can
change the bin boundaries for a single predictor.

1 Click any predictor plot. The predictor plot displays with a blue outline.

2 On the Binning Explorer toolbar, click Manual Binning. Click to select a specific
bin where you want to change the bin dimensions. The selected bin displays with a
blue outline.
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3 On the Binning Explorer toolbar, the Edges text boxes display values for the
edges of the selected bin.

Edit the values in the Edges text boxes to change the selected bin’s dimensions.
4 Press Enter to complete the operation. The plot for the selected predictor is updated

with the updated bin’s dimension information. The details in the Bin Information
and Predictor Information panes are also updated.

Change Bin Boundaries for Multiple Predictors

After you import data or a creditscorecard object into Binning Explorer, you can
change the algorithm applied to one or more predictors and you can also redefine the
number of bins.

1 Click any predictor plot. The predictor plot displays with a blue outline.
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Alternatively, select two or more predictors by using Ctrl + click to multiselect
predictors to display with blue outlines.

2 On the Binning Explorer toolbar, click Algorithm Options to open the Algorithm
Options dialog box.

3 From the Algorithm Options dialog box, under Algorithm name, select a binning
algorithm.

• For the EqualWidth and EqualFrequency options, enter a number in the
Number of bins box. Optionally, for EqualWidth and EqualFrequency
options, under Category Sorting, specify the type of sorting.

• For the Monotone option, the default of 10 is used for the Initial number of
bins. Optionally, you can set values for Trend and Category Sorting.

4 Click OK to complete the operation. The plots for the selected predictors are updated
with the new bin information. The details in the Bin Information and Predictor
Information panes are also updated.
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Set Options for Display

Binning Explorer has options for displaying predictor plots and plot options and the
associated tables displayed in Bin Information.

Plot Options

1 From the Binning Explorer toolbar item for Plot Options, select any of the
following predictor plot options:

• No labels (default)
• Bin count
• % Bin level
• % Data level
• % Total count
• WOE curve

2 The selected label is applied to all predictor plots.

Table Options

You can set the table display options for predictor information displayed in Bin
Information.

1 From the Binning Explorer toolbar item for Table Columns, select any of the
following options:

• Odds
• WOE
• InfoValue
• Entropy
• Members (option is enabled for categorical predictors)

2 When selected, these options are applied to all predictors for the information
displayed in Bin Information.
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Export and Save the Binning

Binning Explorer enables you to export and save your credit scorecard binning
definitions to a creditscorecard object.

1 Click Export and provide a creditscorecard object name. The
creditscorecard object is saved to the MATLAB workspace.

Note: If you export a previously existing creditscorecard object that was fit
(using fitmodel), all fitting settings in the creditscorecard object are lost. You
must rerun fitmodel on the updated creditscorecard object.

2 To reopen a previously saved creditscorecard object, click Import Data and
select the creditscorecard object from the Step 1 pane of the Import Data
window.

Troubleshoot the Binning

• “Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data
Properly” on page 3-20

• “Predictor Plot Appears Distorted” on page 3-22

This topic shows some of the results when using Binning Explorer with credit
scorecards that need troubleshooting. For details on the overall process of creating
and developing credit scorecards, see “Overview of Binning Explorer” on page 3-2 and
“Binning Explorer Case Study Example” on page 3-26.

Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data Properly

When you convert a numeric predictor with hundreds of values (for example, continuous
data) to categorical data, the resulting data has hundreds of categories. The following
example illustrates this scenario.

load CreditCardData

Open the Binning Explorer and select the numeric predictor AMBalance. From the
Binning Explorer toolbar, change the predictor type to Categorical.

Select Manual Binning on the Binning Explorer toolbar and click Split. The Split
dialog box displays as follows:
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The predictor has too many categories to display properly.

Solution: If you have a categorical predictor with a large number of categories, use
the Algorithm Options to change the binning algorithm for that predictor to Equal
Frequency, with the Number of bins set to 100 (or another smaller value). The Split
dialog box then displays properly.
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Predictor Plot Appears Distorted

When using the Binning Explorer, if you import data that has not been previously
binned and you select No Binning from the Import Data window, the resulting plots
might be distorted. For example, if you load the following data set into the MATLAB
workspace and use Binning Explorer to import the data using No Binning, the
following plot displays for the TmAtAddress predictor.

load CreditCardData
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Solution: When you import data that has not been previously binned, select Monotone
from the Import Data window instead. The following plot displays for the TmAtAddress
predictor.
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See Also

Apps
Binning Explorer

Functions
creditscorecard

Related Examples
• “Binning Explorer Case Study Example” on page 3-26
• “Case Study for a Credit Scorecard Analysis”

More About
• “Overview of Binning Explorer” on page 3-2
• “Credit Scorecard Modeling Workflow”
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External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)
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Binning Explorer Case Study Example

This example shows how to create a credit scorecard using the Binning Explorer app.
Use the Binning Explorer to bin the data, plot the binned data information, and export
a creditscorecard object. Then use the creditscorecard object with functions
from Financial Toolbox to fit a logistic regression model, determine a score for the data,
determine the probabilities of default, and validate the credit scorecard model using
three different metrics.

Step 1. Load credit scorecard data into the MATLAB workspace.

Use the CreditCardData.mat file to load the data into the MATLAB workspace (using
a dataset from Refaat 2011).

load CreditCardData

disp(data(1:10,:))

  CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status

    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

     1        53         62             Tenant        Unknown      50000         55         Yes        1055.9       0.22        0     

     2        61         22             Home Owner    Employed     52000         25         Yes        1161.6       0.24        0     

     3        47         30             Tenant        Employed     37000         61         No         877.23       0.29        0     

     4        50         75             Home Owner    Employed     53000         20         Yes        157.37       0.08        0     

     5        68         56             Home Owner    Employed     53000         14         Yes        561.84       0.11        0     

     6        65         13             Home Owner    Employed     48000         59         Yes        968.18       0.15        0     

     7        34         32             Home Owner    Unknown      32000         26         Yes        717.82       0.02        1     

     8        50         57             Other         Employed     51000         33         No         3041.2       0.13        0     

     9        50         10             Tenant        Unknown      52000         25         Yes        115.56       0.02        1     

    10        49         30             Home Owner    Unknown      53000         23         Yes         718.5       0.17        1     

Step 2. Import the data into Binning Explorer.

Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under
Computational Finance, click the app icon. Alternatively, you can enter
binningExplorer on the command line.

From the Binning Explorer toolbar, select Import Data to open the Import Data
window.
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Under Step 1, select data.

Under Step 2, optionally set the Variable Type for each of the predictors. By default,
the last column in the data ('status' in this example) is set to 'Response'. The
response value with the highest count (0 in this example) is set to 'Good'. All other
variables are considered predictors. However, in this example, because 'CustID' is not a
predictor, set the Variable Type column for 'CustID' to Do not include.

Under Step 3, leave Monotone as the default initial binning algorithm.

Click Import Data to complete the import operation. Automatic binning using the
selected algorithm is applied to all predictors as they are imported into Binning
Explorer.

The bins are plotted and displayed for each predictor. By clicking to select an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes at the bottom of the app.
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Binning Explorer performs automatic binning for every predictor variable, using
the default 'Monotone' algorithm with default algorithm options. A monotonic,
ideally linear trend in the Weight of Evidence (WOE) is often desirable for credit
scorecards because this translates into linear points for a given predictor. WOE trends
are visualized on the plots for each predictor in Binning Explorer.

Perform some initial data exploration. Inquire about predictor statistics for the
'ResStatus' categorical variable.
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Click the ResStatus plot. The Bin Information pane contains the “Good” and “Bad”
frequencies and other bin statistics such as weight of evidence (WOE).

For numeric data, the same statistics are displayed. Click the CustIncome plot. The
Bin Information is updated with the information about CustIncome.

Step 3. Fine-tune the bins using manual binning in Binning Explorer.

Click the CustAge predictor plot. Notice that bins 1 and 2 have similar WOEs, as do bins
5 and 6.
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To merge bins 1 and 2, from the Binning Explorer toolbar, click Manual Binning
to open the selected predictor in a new tabbed window. Alternatively, double-click the
predictor plot to open the Manual Binning tab. Select bin 1 and 2 for merging by using
Ctrl + click to multiselect these bins to display with blue outlines.
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On the Binning Explorer toolbar, the Edges text boxes display values for the edges of
the selected bins to merge.

Click Merge to finish merging bins 1 and 2. The CustAge predictor plot is updated
for the new bin information and the details in the Bin Information and Predictor
Information panes are also updated.
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Next, merge bins 4 and 5, because they also have similar WOEs.
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The CustAge predictor plot is updated with the new bin information. The details in the
Bin Information and Predictor Information panes are also updated.

Repeat this merge operation for the following bins that have similar WOEs:

• For CustIncome, merge bins 3, 4 and 5.
• For TmWBank, merge bins 2 and 3.
• For AMBalance, merge bins 2 and 3.

Now the bins for all predictors have close-to-linear WOE trends.
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Step 4. Export the creditscorecard object from Binning Explorer.

After you complete your binning assignments, using Binning Explorer, click Export
and provide a creditscorecard object name. The creditscorecard object (sc) is
saved to the MATLAB workspace.

Step 5. Fit a logistic regression model.

Use the fitmodel function to fit a logistic regression model to the WOE data. fitmodel
internally bins the training data, transforms it into WOE values, maps the response
variable so that 'Good' is 1, and fits a linear logistic regression model. By default,
fitmodel uses a stepwise procedure to determine which predictors belong in the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8954, Chi2Stat = 32.545914, PValue = 1.1640961e-08

2. Adding TmWBank, Deviance = 1467.3249, Chi2Stat = 23.570535, PValue = 1.2041739e-06

3. Adding AMBalance, Deviance = 1455.858, Chi2Stat = 11.466846, PValue = 0.00070848829

4. Adding EmpStatus, Deviance = 1447.6148, Chi2Stat = 8.2432677, PValue = 0.0040903428

5. Adding CustAge, Deviance = 1442.06, Chi2Stat = 5.5547849, PValue = 0.018430237

6. Adding ResStatus, Deviance = 1437.9435, Chi2Stat = 4.1164321, PValue = 0.042468555

7. Adding OtherCC, Deviance = 1433.7372, Chi2Stat = 4.2063597, PValue = 0.040272676

Generalized Linear regression model:

    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance

    Distribution = Binomial

Estimated Coefficients:

                   Estimate      SE       tStat       pValue  

                   ________    _______    ______    __________

    (Intercept)     0.7024       0.064    10.975    5.0407e-28

    CustAge        0.61562     0.24783    2.4841      0.012988

    ResStatus       1.3776     0.65266    2.1107      0.034799

    EmpStatus      0.88592     0.29296     3.024     0.0024946

    CustIncome     0.69836     0.21715     3.216     0.0013001

    TmWBank          1.106     0.23266    4.7538    1.9958e-06

    OtherCC         1.0933     0.52911    2.0662      0.038806

    AMBalance       1.0437     0.32292    3.2322     0.0012285

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.42e-16

Step 6. Review and format scorecard points.

After fitting the logistic model, the points are unscaled by default and come directly from
the combination of WOE values and model coefficients. Use thedisplaypoints function
to summarizes the scorecard points.

p1 = displaypoints(sc);
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disp(p1)

    Predictors            Bin             Points  

    ____________    __________________    _________

    'CustAge'       '[-Inf,37)'            -0.15314

    'CustAge'       '[37,40)'             -0.062247

    'CustAge'       '[40,46)'              0.045763

    'CustAge'       '[46,58)'               0.22888

    'CustAge'       '[58,Inf]'              0.48354

    'ResStatus'     'Tenant'              -0.031302

    'ResStatus'     'Home Owner'            0.12697

    'ResStatus'     'Other'                 0.37652

    'EmpStatus'     'Unknown'             -0.076369

    'EmpStatus'     'Employed'              0.31456

    'CustIncome'    '[-Inf,29000)'         -0.45455

    'CustIncome'    '[29000,33000)'         -0.1037

    'CustIncome'    '[33000,42000)'        0.077768

    'CustIncome'    '[42000,47000)'         0.24406

    'CustIncome'    '[47000,Inf]'           0.43536

    'TmWBank'       '[-Inf,12)'            -0.18221

    'TmWBank'       '[12,45)'             -0.038279

    'TmWBank'       '[45,71)'               0.39569

    'TmWBank'       '[71,Inf]'              0.95074

    'OtherCC'       'No'                     -0.193

    'OtherCC'       'Yes'                   0.15868

    'AMBalance'     '[-Inf,558.88)'          0.3552

    'AMBalance'     '[558.88,1597.44)'    -0.026797

    'AMBalance'     '[1597.44,Inf]'        -0.21168

Use modifybins to give the bins more descriptive labels.
sc = modifybins(sc,'CustAge','BinLabels',...

{'Up to 36' '37 to 39' '40 to 45' '46 to 57' '58 and up'});

sc = modifybins(sc,'CustIncome','BinLabels',...

{'Up to 28999' '29000 to 32999' '33000 to 41999' '42000 to 46999' '47000 and up'});

sc = modifybins(sc,'TmWBank','BinLabels',...

{'Up to 11' '12 to 44' '45 to 70' '71 and up'});

sc = modifybins(sc,'AMBalance','BinLabels',...

{'Up to 558.87' '558.88 to 1597.43' '1597.44 and up'});

p1 = displaypoints(sc);

disp(p1)

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       'Up to 36'              -0.15314

    'CustAge'       '37 to 39'             -0.062247

    'CustAge'       '40 to 45'              0.045763

    'CustAge'       '46 to 57'               0.22888

    'CustAge'       '58 and up'              0.48354

    'ResStatus'     'Tenant'               -0.031302

    'ResStatus'     'Home Owner'             0.12697
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    'ResStatus'     'Other'                  0.37652

    'EmpStatus'     'Unknown'              -0.076369

    'EmpStatus'     'Employed'               0.31456

    'CustIncome'    'Up to 28999'           -0.45455

    'CustIncome'    '29000 to 32999'         -0.1037

    'CustIncome'    '33000 to 41999'        0.077768

    'CustIncome'    '42000 to 46999'         0.24406

    'CustIncome'    '47000 and up'           0.43536

    'TmWBank'       'Up to 11'              -0.18221

    'TmWBank'       '12 to 44'             -0.038279

    'TmWBank'       '45 to 70'               0.39569

    'TmWBank'       '71 and up'              0.95074

    'OtherCC'       'No'                      -0.193

    'OtherCC'       'Yes'                    0.15868

    'AMBalance'     'Up to 558.87'            0.3552

    'AMBalance'     '558.88 to 1597.43'    -0.026797

    'AMBalance'     '1597.44 and up'        -0.21168

Points are usually scaled and are also often rounded. To round and scale the points,
use the formatpoints function. For example, you can set a target level of points
corresponding to a target odds level and also set the required points-to-double-the-odds
(PDO).
TargetPoints = 500;

TargetOdds = 2;

PDO = 50; % Points to double the odds

sc = formatpoints(sc,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);

p2 = displaypoints(sc);

disp(p2)

    Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       'Up to 36'             53.239

    'CustAge'       '37 to 39'             59.796

    'CustAge'       '40 to 45'             67.587

    'CustAge'       '46 to 57'             80.796

    'CustAge'       '58 and up'            99.166

    'ResStatus'     'Tenant'               62.028

    'ResStatus'     'Home Owner'           73.445

    'ResStatus'     'Other'                91.446

    'EmpStatus'     'Unknown'              58.777

    'EmpStatus'     'Employed'             86.976

    'CustIncome'    'Up to 28999'          31.497

    'CustIncome'    '29000 to 32999'       56.805

    'CustIncome'    '33000 to 41999'       69.896
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    'CustIncome'    '42000 to 46999'       81.891

    'CustIncome'    '47000 and up'          95.69

    'TmWBank'       'Up to 11'             51.142

    'TmWBank'       '12 to 44'             61.524

    'TmWBank'       '45 to 70'             92.829

    'TmWBank'       '71 and up'            132.87

    'OtherCC'       'No'                   50.364

    'OtherCC'       'Yes'                  75.732

    'AMBalance'     'Up to 558.87'         89.908

    'AMBalance'     '558.88 to 1597.43'    62.353

    'AMBalance'     '1597.44 and up'       49.016

Step 7. Score the data.

Use the score function to compute the scores for the training data. You can also pass an
optional data input. to score, for example, validation data. The points per predictor for
each customer are provided as an optional output.

[Scores,Points] = score(sc);

disp(Scores(1:10))

disp(Points(1:10,:))

  528.2044

  554.8861

  505.2406

  564.0717

  554.8861

  586.1904

  441.8755

  515.8125

  524.4553

  508.3169

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance

    _______    _________    _________    __________    _______    _______    _________

    80.796     62.028       58.777        95.69        92.829     75.732     62.353   

    99.166     73.445       86.976        95.69        61.524     75.732     62.353   

    80.796     62.028       86.976       69.896        92.829     50.364     62.353   

    80.796     73.445       86.976        95.69        61.524     75.732     89.908   

    99.166     73.445       86.976        95.69        61.524     75.732     62.353   

    99.166     73.445       86.976        95.69        92.829     75.732     62.353   

    53.239     73.445       58.777       56.805        61.524     75.732     62.353   

    80.796     91.446       86.976        95.69        61.524     50.364     49.016   

    80.796     62.028       58.777        95.69        61.524     75.732     89.908   

    80.796     73.445       58.777        95.69        61.524     75.732     62.353   

Step 8. Calculate the probability of default.

To calculate the probability of default, use the probdefault function.
pd = probdefault(sc);
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Define the probability of being “Good” and plot the predicted odds versus the formatted
scores. Visually analyze that the target points and target odds match and that the points-
to-double-the-odds (PDO) relationship holds.
ProbGood = 1-pd;

PredictedOdds = ProbGood./pd;

figure

scatter(Scores,PredictedOdds)

title('Predicted Odds vs. Score')

xlabel('Score')

ylabel('Predicted Odds')

hold on

xLimits = xlim;

yLimits = ylim;

% Target points and odds

plot([TargetPoints TargetPoints],[yLimits(1) TargetOdds],'k:')

plot([xLimits(1) TargetPoints],[TargetOdds TargetOdds],'k:')

% Target points plus PDO

plot([TargetPoints+PDO TargetPoints+PDO],[yLimits(1) 2*TargetOdds],'k:')

plot([xLimits(1) TargetPoints+PDO],[2*TargetOdds 2*TargetOdds],'k:')

% Target points minus PDO

plot([TargetPoints-PDO TargetPoints-PDO],[yLimits(1) TargetOdds/2],'k:')

plot([xLimits(1) TargetPoints-PDO],[TargetOdds/2 TargetOdds/2],'k:')

hold off
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Step 9. Validate the credit scorecard model using the CAP, ROC, and Kolmogorov-Smirnov
statistic

The creditscorecard object supports three validation methods, the Cumulative
Accuracy Profile (CAP), the Receiver Operating Characteristic (ROC), and the
Kolmogorov-Smirnov (KS) statistic. For more information on CAP, ROC, and KS, see
validatemodel.
[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});

disp(Stats)

disp(T(1:15,:))

          Measure             Value 

    ______________________    _______

    'Accuracy Ratio'          0.32225

    'Area under ROC curve'    0.66113

    'KS statistic'            0.22324

    'KS score'                 499.18

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm      PctObs  

    ______    ___________    ________    _________    _________    __________    ___________    __________    __________

     369.4     0.7535         0          1            802          397                   0      0.0012453     0.00083333

3-39



3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

    377.86    0.73107         1          1            802          396           0.0025189      0.0012453      0.0016667

    379.78     0.7258         2          1            802          395           0.0050378      0.0012453         0.0025

    391.81    0.69139         3          1            802          394           0.0075567      0.0012453      0.0033333

    394.77    0.68259         3          2            801          394           0.0075567      0.0024907      0.0041667

    395.78    0.67954         4          2            801          393            0.010076      0.0024907          0.005

    396.95    0.67598         5          2            801          392            0.012594      0.0024907      0.0058333

    398.37    0.67167         6          2            801          391            0.015113      0.0024907      0.0066667

    401.26    0.66276         7          2            801          390            0.017632      0.0024907         0.0075

    403.23    0.65664         8          2            801          389            0.020151      0.0024907      0.0083333

    405.09    0.65081         8          3            800          389            0.020151       0.003736      0.0091667

    405.15    0.65062        11          5            798          386            0.027708      0.0062267       0.013333

    405.37    0.64991        11          6            797          386            0.027708       0.007472       0.014167

    406.18    0.64735        12          6            797          385            0.030227       0.007472          0.015

    407.14    0.64433        13          6            797          384            0.032746       0.007472       0.015833
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See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | plotbins |
predictorinfo | probdefault | score | setmodel | validatemodel

Related Examples
• “Troubleshooting Credit Scorecard Results”
• “Credit Rating by Bagging Decision Trees”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page
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More About
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• Monotone Adjacent Pooling Algorithm (MAPA)
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• creditscorecard

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)
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Stress Testing of Consumer Credit Default Probabilities Using Panel
Data

This example shows how to work with consumer (retail) credit panel data to visualize
observed default rates at different levels. It also shows how to fit a model to predict
probabilities of default and perform a stress-testing analysis.

The panel data set of consumer loans enables you to identify default rate patterns
for loans of different ages, or years on books. You can use information about a score
group to distinguish default rates for different score levels. In addition, you can use
macroeconomic information to assess how the state of the economy affects consumer loan
default rates.

A standard logistic regression model, a type of generalized linear model, is fitted
to the retail credit panel data with and without macroeconomic predictors. The
example describes how to fit a more advanced model to account for panel data effects, a
generalized linear mixed effects model. However, the panel effects are negligible for the
data set in this example and the standard logistic model is preferred for efficiency.

The standard logistic regression model predicts probabilities of default for all score
levels, years on books, and macroeconomic variable scenarios. When the standard logistic
regression model is used for a stress-testing analysis, the model predicts probabilities
of default for a given baseline, as well as default probabilites for adverse and severely
adverse macroeconomic scenarios.

Panel Data Description

The main data set (data) contains the following variables:

• ID: Loan identifier.
• ScoreGroup: Credit score at the beginning of the loan, discretized into three groups:

High Risk, Medium Risk, and Low Risk.
• YOB: Years on books.
• Default: Default indicator. This is the response variable.
• Year: Calendar year.

There is also a small data set (dataMacro) with macroeconomic data for the
corresponding calendar years:

• Year: Calendar year.
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• GDP: Gross domestic product growth (year over year).
• Market: Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding
calendar year. The score group is a discretization of the original credit score when
the loan started. A value of 1 for Default means that the loan defaulted in the
corresponding calendar year.

There is also a third data set (dataMacroStress) with baseline, adverse, and severely
adverse scenarios for the macroeconomic variables. This table is used for the stress-
testing analysis.

This example uses simulated data, but the same approach has been successfully applied
to real data sets.

Load the Panel Data

Load the data and view the first 10 and last 10 rows of the table. The panel data is
stacked, in the sense that observations for the same ID are stored in contiguous rows,
creating a tall, thin table. The panel is unbalanced, because not all IDs have the same
number of observations.

load RetailCreditPanelData.mat

fprintf('\nFirst ten rows:\n')

disp(data(1:10,:))

fprintf('Last ten rows:\n')

disp(data(end-9:end,:))

nRows = height(data);

UniqueIDs = unique(data.ID);

nIDs = length(UniqueIDs);

fprintf('Total number of IDs: %d\n',nIDs)

fprintf('Total number of rows: %d\n',nRows)

First ten rows:

    ID    ScoreGroup     YOB    Default    Year

    __    ___________    ___    _______    ____

    1     Low Risk       1      0          1997
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    1     Low Risk       2      0          1998

    1     Low Risk       3      0          1999

    1     Low Risk       4      0          2000

    1     Low Risk       5      0          2001

    1     Low Risk       6      0          2002

    1     Low Risk       7      0          2003

    1     Low Risk       8      0          2004

    2     Medium Risk    1      0          1997

    2     Medium Risk    2      0          1998

Last ten rows:

     ID      ScoreGroup     YOB    Default    Year

    _____    ___________    ___    _______    ____

    96819    High Risk      6      0          2003

    96819    High Risk      7      0          2004

    96820    Medium Risk    1      0          1997

    96820    Medium Risk    2      0          1998

    96820    Medium Risk    3      0          1999

    96820    Medium Risk    4      0          2000

    96820    Medium Risk    5      0          2001

    96820    Medium Risk    6      0          2002

    96820    Medium Risk    7      0          2003

    96820    Medium Risk    8      0          2004

Total number of IDs: 96820

Total number of rows: 646724

Default Rates by Score Groups and Years on Books

Use the credit score group as a grouping variable to compute the observed default rate
for each score group. For this, use the varfun function to compute the mean of the
Default variable, grouping by the ScoreGroup variable. Plot the results on a bar chart.
As expected, the default rate goes down as the credit quality improves.

DefRateByScore = varfun(@mean,data,'InputVariables','Default',...

   'GroupingVariables','ScoreGroup');

NumScoreGroups = height(DefRateByScore);

disp(DefRateByScore)

figure;

bar(double(DefRateByScore.ScoreGroup),DefRateByScore.mean_Default*100)

set(gca,'XTickLabel',categories(data.ScoreGroup))
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title('Default Rate vs. Score Group')

xlabel('Score Group')

ylabel('Observed Default Rate (%)')

grid on

    ScoreGroup     GroupCount    mean_Default

    ___________    __________    ____________

    High Risk      2.0999e+05     0.017167   

    Medium Risk    2.1743e+05    0.0086006   

    Low Risk        2.193e+05    0.0046784   
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Next, compute default rates grouping by years on books (represented by the YOB
variable). The resulting rates are conditional one-year default rates. For example, the
default rate for the third year on books is the proportion of loans defaulting in the third
year, relative to the number of loans that are in the portfolio past the second year. In
other words, the default rate for the third year is the number of rows with YOB = 3 and
Default = 1, divided by the number of rows with YOB = 3.

Plot the results. There is a clear downward trend, with default rates going down as the
number of years on books increases. Years three and four have similar default rates.
However, it is unclear from this plot whether this is a characteristic of the loan product
or an effect of the macroeconomic environment.

DefRateByYOB = varfun(@mean,data,'InputVariables','Default',...

   'GroupingVariables','YOB');

NumYOB = height(DefRateByYOB);

disp(DefRateByYOB)

figure;

plot(double(DefRateByYOB.YOB),DefRateByYOB.mean_Default*100,'-*')

title('Default Rate vs. Years on Books')

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

grid on

    YOB    GroupCount    mean_Default

    ___    __________    ____________

    1      96820          0.017507   

    2      94535          0.012704   

    3      92497          0.011168   

    4      91068          0.010728   

    5      89588         0.0085949   

    6      88570          0.006413   

    7      61689         0.0033231   

    8      31957         0.0016272   
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Now, group both by score group and number of years on books. Plot the results. The
plot shows that all score groups behave similarly as time progresses, with a general
downward trend. Years three and four are an exception to the downward trend: the rates
flatten for the High Risk group, and go up in year three for the Low Risk group.

DefRateByScoreYOB = varfun(@mean,data,'InputVariables','Default',...

   'GroupingVariables',{'ScoreGroup','YOB'});

% Display output table to show the way it is structured

% Display only the first 10 rows, for brevity

disp(DefRateByScoreYOB(1:10,:))

disp('     ...')

DefRateByScoreYOB2 = reshape(DefRateByScoreYOB.mean_Default,...
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   NumYOB,NumScoreGroups);

figure;

plot(DefRateByScoreYOB2*100,'-*')

title('Default Rate vs. Years on Books')

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

legend(categories(data.ScoreGroup))

grid on

    ScoreGroup     YOB    GroupCount    mean_Default

    ___________    ___    __________    ____________

    High Risk      1      32601          0.029692   

    High Risk      2      31338          0.021252   

    High Risk      3      30138          0.018448   

    High Risk      4      29438          0.018276   

    High Risk      5      28661          0.014794   

    High Risk      6      28117          0.011168   

    High Risk      7      19606         0.0056615   

    High Risk      8      10094         0.0027739   

    Medium Risk    1      32373          0.014302   

    Medium Risk    2      31775          0.011676   

     ...
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Years on Books Versus Calendar Years

The data contains three cohorts, or vintages: loans started in 1997, 1998, and 1999. No
loan in the panel data started after 1999.

This section shows how to visualize the default rate for each cohort separately. The
default rates for all cohorts are plotted, both against the number of years on books
and against the calendar year. Patterns in the years on books suggest the loan
product characteristics. Patterns in the calendar years suggest the influence of the
macroeconomic environment.

From years two through four on books, the curves show different patterns for the three
cohorts. When plotted against the calendar year, however, the three cohorts show similar
behavior from 2000 through 2002. The curves flatten during that period.

3-51



3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

% Get IDs of 1997, 1998, and 1999 cohorts

IDs1997 = data.ID(data.YOB==1&data.Year==1997);

IDs1998 = data.ID(data.YOB==1&data.Year==1998);

IDs1999 = data.ID(data.YOB==1&data.Year==1999);

% IDs2000AndUp is unused, it is only computed to show that this is empty,

% no loans started after 1999

IDs2000AndUp = data.ID(data.YOB==1&data.Year>1999);

% Get default rates for each cohort separately

ObsDefRate1997 = varfun(@mean,data(ismember(data.ID,IDs1997),:),...

    'InputVariables','Default','GroupingVariables','YOB');

ObsDefRate1998 = varfun(@mean,data(ismember(data.ID,IDs1998),:),...

    'InputVariables','Default','GroupingVariables','YOB');

ObsDefRate1999 = varfun(@mean,data(ismember(data.ID,IDs1999),:),...

    'InputVariables','Default','GroupingVariables','YOB');

% Plot against the years on books

figure;

plot(ObsDefRate1997.YOB,ObsDefRate1997.mean_Default*100,'-*')

hold on

plot(ObsDefRate1998.YOB,ObsDefRate1998.mean_Default*100,'-*')

plot(ObsDefRate1999.YOB,ObsDefRate1999.mean_Default*100,'-*')

hold off

title('Default Rate vs. Years on Books')

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Cohort 97','Cohort 98','Cohort 99')

grid on

% Plot against the calendar year

Year = unique(data.Year);

figure;

plot(Year,ObsDefRate1997.mean_Default*100,'-*')

hold on

plot(Year(2:end),ObsDefRate1998.mean_Default*100,'-*')

plot(Year(3:end),ObsDefRate1999.mean_Default*100,'-*')

hold off

title('Default Rate vs. Calendar Year')

xlabel('Calendar Year')

ylabel('Default Rate (%)')

legend('Cohort 97','Cohort 98','Cohort 99')

grid on
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Model of Default Rates Using Score Group and Years on Books

After you visualize the data, you can build predictive models for the default rates.

Split the panel data into training and testing sets, defining these sets based on ID
numbers.

NumTraining = floor(0.6*nIDs);

rng('default');

TrainIDInd = randsample(nIDs,NumTraining);

TrainDataInd = ismember(data.ID,UniqueIDs(TrainIDInd));

TestDataInd = ~TrainDataInd;
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The first model uses only score group and number of years on books as predictors of the
default rate p. The odds of defaulting are defined as p/(1-p). The logistic model relates
the logarithm of the odds, or log odds, to the predictors as follows:

1M is an indicator with a value 1 for Medium Risk loans and 0 otherwise, and similarly
for 1L for Low Risk loans. This is a standard way of handling a categorical predictor
such as ScoreGroup. There is effectively a different constant for each risk level: aH for
High Risk, aH+aM for Medium Risk, and aH+aL for Low Risk.

To calibrate the model, call the fitglm function from Statistics and Machine Learning
Toolbox™. The formula above is expressed as

Default ~ 1 + ScoreGroup + YOB

The 1 + ScoreGroup terms account for the baseline constant and the adjustments for
risk level. Set the optional argument Distribution to binomial to indicate that a
logistic model is desired (that is, a model with log odds on the left side).

ModelNoMacro = fitglm(data(TrainDataInd,:),...

   'Default ~ 1 + ScoreGroup + YOB',...

   'Distribution','binomial');

disp(ModelNoMacro)

Generalized linear regression model:

    logit(Default) ~ 1 + ScoreGroup + YOB

    Distribution = Binomial

Estimated Coefficients:

                              Estimate       SE        tStat       pValue   

                              ________    ________    _______    ___________

    (Intercept)                -3.2453    0.033768    -96.106              0

    ScoreGroup_Medium Risk     -0.7058    0.037103    -19.023     1.1014e-80

    ScoreGroup_Low Risk        -1.2893    0.045635    -28.253    1.3076e-175

    YOB                       -0.22693    0.008437    -26.897    2.3578e-159

388018 observations, 388014 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0
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For any row in the data, the value of p is not observed, only a 0 or 1 default indicator
is observed. The calibration finds model coefficients, and the predicted values of p for
individual rows can be recovered with the predict function.

The Intercept coefficient is the constant for the High Risk level (the aH term),
and the ScoreGroup_Medium Risk and ScoreGroup_Low Risk coefficients are the
adjustments for Medium Risk and Low Risk levels (the aM and aL terms).

The default probability p and the log odds (the left side of the model) move in the same
direction when the predictors change. Therefore, because the adjustments for Medium
Risk and Low Risk are negative, the default rates are lower for better risk levels, as
expected. The coefficient for number of years on books is also negative, consistent with
the overall downward trend for number of years on books observed in the data.

To account for panel data effects, a more advanced model using mixed effects can be
fitted using the fitglme function from Statistics and Machine Learning Toolbox™.
Although this model is not fitted in this example, the code is very similar:

ModelNoMacro = fitglme(data(TrainDataInd,:),...

'Default ~ 1 + ScoreGroup + YOB + (1|ID)',...

'Distribution','binomial');

The (1|ID) term in the formula adds a random effect to the model. This effect is a
predictor whose values are not given in the data, but calibrated together with the
model coefficients. A random value is calibrated for each ID. This additional calibration
requirement substantially increases the computational time to fit the model in this case,
because of the very large number of IDs. For the panel data set in this example, the
random term has a negligible effect. The variance of the random effects is very small and
the model coefficients barely change when the random effect is introduced. The simpler
logistic regression model is preferred, because it is faster to calibrate and to predict, and
the default rates predicted with both models are essentially the same.

Predict the probability of default for training and testing data.

data.PDNoMacro = zeros(height(data),1);

% Predict in-sample

data.PDNoMacro(TrainDataInd) = predict(ModelNoMacro,data(TrainDataInd,:));

% Predict out-of-sample

data.PDNoMacro(TestDataInd) = predict(ModelNoMacro,data(TestDataInd,:));

Visualize the in-sample fit.
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PredPDTrainYOB = varfun(@mean,data(TrainDataInd,:),...

    'InputVariables',{'Default','PDNoMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_Default*100,'*');

hold on

plot(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_PDNoMacro*100);

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','Predicted')

title('Model Fit (Training Data)')

grid on
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Visualize the out-of-sample fit.

PredPDTestYOB = varfun(@mean,data(TestDataInd,:),...

    'InputVariables',{'Default','PDNoMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTestYOB.YOB,PredPDTestYOB.mean_Default*100,'*');

hold on

plot(PredPDTestYOB.YOB,PredPDTestYOB.mean_PDNoMacro*100);

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','Predicted')

title('Model Fit (Testing Data)')

grid on
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Visualize the in-sample fit for all score groups. The out-of-sample fit can be computed
and visualized in a similar way.

PredPDTrainScoreYOB = varfun(@mean,data(TrainDataInd,:),...

    'InputVariables',{'Default','PDNoMacro'},...

    'GroupingVariables',{'ScoreGroup','YOB'});

figure;

hs = gscatter(PredPDTrainScoreYOB.YOB,...

    PredPDTrainScoreYOB.mean_Default*100,...

    PredPDTrainScoreYOB.ScoreGroup,'rbmgk','*');

mean_PDNoMacroMat = reshape(PredPDTrainScoreYOB.mean_PDNoMacro,...

   NumYOB,NumScoreGroups);

hold on
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hp = plot(mean_PDNoMacroMat*100);

for ii=1:NumScoreGroups

   hp(ii).Color = hs(ii).Color;

end

hold off

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

legend(categories(data.ScoreGroup))

title('Model Fit by Score Group (Training Data)')

grid on

Model of Default Rates Including Macroeconomic Variables

The trend predicted with the previous model, as a function of years on books, has a very
regular decreasing pattern. The data, however, shows some deviations from that trend.
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To try to account for those deviations, add the gross domestic product annual growth
(represented by the GDP variable) and stock market annual returns (represented by the
Market variable) to the model.

Expand the data set to add one column for GDP and one for Market, using the data from
the dataMacro table.

data.GDP = dataMacro.GDP(data.Year-1996);

data.Market = dataMacro.Market(data.Year-1996);

disp(data(1:10,:))

    ID    ScoreGroup     YOB    Default    Year    PDNoMacro     GDP     Market

    __    ___________    ___    _______    ____    _________    _____    ______

    1     Low Risk       1      0          1997    0.0084797     2.72      7.61

    1     Low Risk       2      0          1998    0.0067697     3.57     26.24

    1     Low Risk       3      0          1999    0.0054027     2.86      18.1

    1     Low Risk       4      0          2000    0.0043105     2.43      3.19

    1     Low Risk       5      0          2001    0.0034384     1.26    -10.51

    1     Low Risk       6      0          2002    0.0027422    -0.59    -22.95

    1     Low Risk       7      0          2003    0.0021867     0.63      2.78

    1     Low Risk       8      0          2004    0.0017435     1.85      9.48

    2     Medium Risk    1      0          1997     0.015097     2.72      7.61

    2     Medium Risk    2      0          1998     0.012069     3.57     26.24

Fit the model with the macroeconomic variables by expanding the model formula to
include the GDP and the Market variables.

ModelMacro = fitglm(data(TrainDataInd,:),...

   'Default ~ 1 + ScoreGroup + YOB + GDP + Market',...

   'Distribution','binomial');

disp(ModelMacro)

Generalized linear regression model:

    logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market

    Distribution = Binomial

Estimated Coefficients:
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                               Estimate        SE         tStat       pValue   

                              __________    _________    _______    ___________

    (Intercept)                   -2.667      0.10146    -26.287    2.6919e-152

    ScoreGroup_Medium Risk      -0.70751     0.037108    -19.066     4.8223e-81

    ScoreGroup_Low Risk          -1.2895     0.045639    -28.253    1.2892e-175

    YOB                         -0.32082     0.013636    -23.528    2.0867e-122

    GDP                         -0.12295     0.039725     -3.095      0.0019681

    Market                    -0.0071812    0.0028298    -2.5377       0.011159

388018 observations, 388012 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 1.97e+03, p-value = 0

Both macroeconomic variables show a negative coefficient, consistent with the intuition
that higher economic growth reduces default rates.

Predict the probability of default for the training and testing data.

data.PDMacro = zeros(height(data),1);

% Predict in-sample

data.PDMacro(TrainDataInd) = predict(ModelMacro,data(TrainDataInd,:));

% Predict out-of-sample

data.PDMacro(TestDataInd) = predict(ModelMacro,data(TestDataInd,:));

Visualize the in-sample fit. As desired, the model including macroeconomic variables, or
macro model, deviates from the smooth trend predicted by the previous model. The rates
predicted with the macro model match more closely with the observed default rates.

PredPDTrainYOBMacro = varfun(@mean,data(TrainDataInd,:),...

    'InputVariables',{'Default','PDMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTrainYOBMacro.YOB,PredPDTrainYOBMacro.mean_Default*100,'*');

hold on

plot(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_PDNoMacro*100); % No Macro

plot(PredPDTrainYOBMacro.YOB,PredPDTrainYOBMacro.mean_PDMacro*100); % Macro

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','No Macro', 'Macro')

title('Macro Model Fit (Training Data)')

grid on
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Visualize the out-of-sample fit.

PredPDTestYOBMacro = varfun(@mean,data(TestDataInd,:),...

    'InputVariables',{'Default','PDMacro'},'GroupingVariables','YOB');

figure;

scatter(PredPDTestYOBMacro.YOB,PredPDTestYOBMacro.mean_Default*100,'*');

hold on

plot(PredPDTestYOB.YOB,PredPDTestYOB.mean_PDNoMacro*100); % No Macro

plot(PredPDTestYOBMacro.YOB,PredPDTestYOBMacro.mean_PDMacro*100); % Macro

hold off

xlabel('Years on Books')

ylabel('Default Rate (%)')

legend('Observed','No Macro', 'Macro')
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title('Macro Model Fit (Testing Data)')

grid on

Visualize the in-sample fit for all score groups.

PredPDTrainScoreYOBMacro = varfun(@mean,data(TrainDataInd,:),...

    'InputVariables',{'Default','PDMacro'},...

    'GroupingVariables',{'ScoreGroup','YOB'});

figure;

hs = gscatter(PredPDTrainScoreYOBMacro.YOB,...

    PredPDTrainScoreYOBMacro.mean_Default*100,...

    PredPDTrainScoreYOBMacro.ScoreGroup,'rbmgk','*');

mean_PDMacroMat = reshape(PredPDTrainScoreYOBMacro.mean_PDMacro,...

   NumYOB,NumScoreGroups);
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hold on

hp = plot(mean_PDMacroMat*100);

for ii=1:NumScoreGroups

   hp(ii).Color = hs(ii).Color;

end

hold off

xlabel('Years on Books')

ylabel('Observed Default Rate (%)')

legend(categories(data.ScoreGroup))

title('Macro Model Fit by Score Group (Training Data)')

grid on

Stress Testing of Probability of Default

Use the fitted macro model to stress-test the predicted probabilities of default.
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Assume the following are stress scenarios for the macroeconomic variables provided, for
example, by a regulator.

disp(dataMacroStress)

                 GDP     Market

                _____    ______

    Baseline     2.27    15.02 

    Adverse      1.31     4.56 

    Severe      -0.22    -5.64 

Set up a basic data table for predicting the probabilities of default. This is a dummy data
table, with one row for each combination of score group and number of years on books.

dataBaseline = table;

[ScoreGroup,YOB]=meshgrid(1:NumScoreGroups,1:NumYOB);

dataBaseline.ScoreGroup = categorical(ScoreGroup(:),1:NumScoreGroups,...

   categories(data.ScoreGroup),'Ordinal',true);

dataBaseline.YOB = YOB(:);

dataBaseline.ID = ones(height(dataBaseline),1);

dataBaseline.GDP = zeros(height(dataBaseline),1);

dataBaseline.Market = zeros(height(dataBaseline),1);

To make the predictions, set the same macroeconomic conditions (baseline, adverse, or
severely adverse) for all combinations of score groups and number of years on books.

% Predict baseline the probabilities of default

dataBaseline.GDP(:) = dataMacroStress.GDP('Baseline');

dataBaseline.Market(:) = dataMacroStress.Market('Baseline');

dataBaseline.PD = predict(ModelMacro,dataBaseline);

% Predict the probabilities of default in the adverse scenario

dataAdverse = dataBaseline;

dataAdverse.GDP(:) = dataMacroStress.GDP('Adverse');

dataAdverse.Market(:) = dataMacroStress.Market('Adverse');

dataAdverse.PD = predict(ModelMacro,dataAdverse);

% Predict the probabilities of default in the severely adverse scenario

dataSevere = dataBaseline;

dataSevere.GDP(:) = dataMacroStress.GDP('Severe');

dataSevere.Market(:) = dataMacroStress.Market('Severe');

dataSevere.PD = predict(ModelMacro,dataSevere);
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Visualize the average predicted probability of default across score groups under the three
alternative regulatory scenarios. Here, all score groups are implicitly weighted equally.
However, predictions can also be made at a loan level for any given portfolio to make the
predicted default rates consistent with the actual distribution of loans in the portfolio.
The same visualization can be produced for each score group separately.

PredPDYOB = zeros(NumYOB,3);

PredPDYOB(:,1) = mean(reshape(dataBaseline.PD,NumYOB,NumScoreGroups),2);

PredPDYOB(:,2) = mean(reshape(dataAdverse.PD,NumYOB,NumScoreGroups),2);

PredPDYOB(:,3) = mean(reshape(dataSevere.PD,NumYOB,NumScoreGroups),2);

figure;

bar(PredPDYOB*100);

xlabel('Years on Books')

ylabel('Predicted Default Rate (%)')

legend('Baseline','Adverse','Severe')

title('Stress Test, Probability of Default')

grid on
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See Also
fitglm | fitglme

Related Examples
• “Credit Rating by Bagging Decision Trees”

More About
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Credit Simulation Using Copulas

In this section...

“Factor Models” on page 4-3
“Supported Simulations” on page 4-3

Predicting the credit losses for a counterparty depends on three main elements:

• Probability of default (PD)
• Exposure at default (EAD), the value of the instrument at some future time
• Loss given default (LGD), which is defined as 1 − Recovery

If these quantities are known at future time t, then the expected loss is PD × EAD ×
LGD. In this case, you can model the expected loss for a single counterparty by using
a binomial distribution. The difficulty arises when you model a portfolio of these
counterparties and you want to simulate them with some default correlation.

To simulate correlated defaults, the copula model associates each counterparty with a
random variable, called a “latent” variable. These latent variables are correlated using
some proxy for their credit worthiness, for example, their stock price. These latent
variables are then mapped to default or nondefault outcomes such that the default occurs
with probability PD.

This figure summarizes the copula simulation approach.

The random variable Ai associated to the ith counterparty falls in the default shaded
region with probability PDi. If the simulated value falls in that region, it is interpreted
as a default. The jth counterparty follows a similar pattern. If the Ai and Aj random
variables are highly correlated, they tend to both have high values (no default), or both
have low values (fall in the default region). Therefore, there is a default correlation.
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Factor Models

For M issuers, M(M − 1)/2 correlation parameters are required. For M = 1000, this is
about half a million correlations. One practical variation of the approach is the one-factor
model, which makes all the latent variables dependent on a single factor. This factor
Z represents the underlying systemic credit quality in the economy. This model also
includes a random idiosyncratic error.

A w Z wi i i i= + -1
2
e

This significantly reduces the input-data requirements, because now you need only the
M sensitivities, that is, the weights w1,…,wM. If Z and εi are standard normal variables,
then Ai is also a standard normal.

An extension of the one-factor model is a multifactor model.

A w Z w Z wi i iK K i i= + + +
1 1

...
e
e

This model has several factors, each one associated with some underlying credit driver.
For example, you can have factors for different regions or countries, or for different
industries. Each latent variable is now a combination of several random variables plus
the idiosyncratic error (epsilon) again.

When the latent variables Ai are normally distributed, there is a Gaussian copula.
A common alternative is to let the latent variables follow a t distribution, which
leads to a t copula. t copulas result in heavier tails than Gaussian copulas. Implied
credit correlations are also larger with t copulas. Switching between these two copula
approaches can provide important information on model risk.

Supported Simulations

The creditCopula object is used to simulate and analyze multifactor credit default
simulations. These simulations assume that you calculated the main inputs to this model
on the your own. The main inputs to this model are:

• PD — Probability of default
• EAD — Exposure at default
• LGD — Loss given default (1 − Recovery)
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• Weights — Factor and idiosyncratic weights
• FactorCorrelation — An optional factor correlation matrix for multifactor models

The creditCopula object enables you to simulate defaults using the multifactor copula
and return the results as a distribution of losses on a portfolio and counterparty level.
You can also use the creditCopula object to calculate several risk measures at the
portfolio level and the risk contributions from individual obligors. The outputs of the
creditCopula model and the associated functions are:

• The full simulated distribution of portfolio losses across scenarios and the losses on
each counterparty across scenarios. See creditCopula properties andsimulate.

• Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
• Risk contributions per counterparty (for EL & CVaR). See riskContribution.
• Risk measures and associated confidence bands. See confidenceBands.

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate

Related Examples
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

More About
• creditCopula
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creditCopula Simulation Workflow

This example shows a common workflow for using a creditCopula object for a portfolio
of credit instruments.

For an example of an advanced workflow using the creditCopula object, see “Modeling
Correlated Defaults with Copulas”.

Step 1. Create a creditCopula object with a two-factor model.

Load saved portfolio data. Create a creditCopula object with a two-factor model using
the creditCopula constructor with the values EAD, PD, LGD, and Weights2F.

load CreditPortfolioData.mat;

cc = creditCopula(EAD, PD, LGD,Weights2F,'FactorCorrelation',FactorCorr2F);

disp(cc)

disp(cc.Portfolio(1:10:100,:))

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9500

       PortfolioLosses: []

    CounterpartyLosses: []

    ID     EAD          PD        LGD              Weights          

    __    ______    __________    ____    __________________________

     1    21.627     0.0050092    0.35      0.35         0      0.65

    11    29.338     0.0050092    0.55      0.35         0      0.65

    21    3.8275     0.0020125    0.25    0.1125    0.3375      0.55

    31    26.286     0.0020125    0.55    0.1125    0.0375      0.85

    41    42.868     0.0050092    0.55      0.25         0      0.75

    51    7.1259    0.00099791    0.25         0      0.25      0.75

    61    10.678     0.0020125    0.35         0      0.15      0.85

    71     2.395    0.00099791    0.55         0      0.15      0.85

    81    26.445      0.060185    0.55         0      0.45      0.55

    91    7.1637       0.11015    0.25      0.35         0      0.65

Step 2. Set the VaRLevel to 99%.

Set the VarLevel property for the creditCopula object to 99% (the default is 95%).
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cc.VaRLevel = 0.99;

Step 3. Run a simulation.

Use the simulate function to run a simulation on the creditCopula object for 100,000
scenarios.

 cc = simulate(cc,1e5)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9900

       PortfolioLosses: [1×100000 double]

    CounterpartyLosses: [100×100000 double]

Step 4. Generate a report for the portfolio risk.

Use the portfolioRisk function to obtain a report for risk measures and confidence
intervals for EL, Std, VaR, and CVaR.

[portRisk,RiskConfidenceInterval] = portfolioRisk(cc)

portRisk = 

      EL       Std       VaR      CVaR 

    ______    ______    ______    _____

    24.768    23.667    102.21    120.9

RiskConfidenceInterval = 

           EL                 Std                 VaR                 CVaR      

    ________________    ________________    ________________    ________________

    24.621    24.914    23.564    23.771    101.12    103.32    119.78    122.01
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Step 5. Visualize the distribution.

Use the histogram function to display the distribution for EL, VaR, and CVaR.

histogram(cc.PortfolioLosses);

title('Distribution of Portfolio Losses');

Step 6. Generate a risk contributions report.

Use the riskContribution function to display the risk contribution. The risk
contributions, EL and CVaR, are additive. If you sum each of these two metrics over
all the counterparties, you get the values reported for the entire portfolio in the
portfolioRisk table.
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rc = riskContribution(cc);

disp(rc(1:10,:))

    ID        EL          CVaR   

    __    __________    _________

     1      0.038907     0.090834

     2      0.068209      0.24527

     3        1.2473       2.6579

     4     0.0025223    0.0065685

     5       0.11905      0.28625

     6       0.12397        0.521

     7       0.83246       1.8713

     8    0.00093656            0

     9       0.91591       4.0861

    10       0.24168       1.8591

Step 7. Simulate the risk exposure with a t copula.

Use the simulate function with optional input arguments for Copula and t. Save the
results to a new creditCopula object (cct).

cct = simulate(cc,1e5,'Copula','t','DegreesOfFreedom',10)

cct = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9900

       PortfolioLosses: [1×100000 double]

    CounterpartyLosses: [100×100000 double]

Step 8. Compare confidence bands for different copulas.

Use the confidenceBands function to compare confidence bands for the two different
copulas.

confidenceBands(cc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)

confidenceBands(cct,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)
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ans = 

    NumScenarios    Lower      Std      Upper 

    ____________    ______    ______    ______

    10000             23.5    23.773    24.053

    20000            23.64    23.834    24.032

    30000           23.682    23.841    24.003

    40000           23.514     23.65    23.789

    50000           23.569    23.692    23.816

    60000            23.59    23.702    23.816

    70000           23.616     23.72    23.825

    80000           23.623    23.721    23.819

    90000           23.614    23.705    23.797

    1e+05            23.58    23.667    23.755

ans = 

    NumScenarios    Lower      Std      Upper 

    ____________    ______    ______    ______

    10000           32.413     32.79    33.176

    20000            31.84    32.102    32.368

    30000           31.663    31.876    32.091

    40000           31.623    31.807    31.993

    50000           31.908    32.073    32.241

    60000           31.919     32.07    32.223

    70000           31.934    32.074    32.216

    80000           32.033    32.165    32.298

    90000           32.081    32.205     32.33

    1e+05           32.138    32.256    32.375

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “Modeling Correlated Defaults with Copulas” on page 4-11
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More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
• creditCopula
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Modeling Correlated Defaults with Copulas

This example explores how to simulate correlated counterparty defaults using a
multifactor copula model.

Potential losses are estimated for a portfolio of counterparties, given their exposure at
default, default probability, and loss given default information. A creditCopula object
is used to model each obligor's credit worthiness with latent variables. Latent variables
are composed of a series of weighted underlying credit factors, as well as, each obligor's
idiosyncratic credit factor. The latent variables are mapped to an obligor's default
or nondefault state for each scenario based on their probability of default. Portfolio
risk measures, risk contributions at a counterparty level, and simulation convergence
information are supported in the creditCopula object.

This example also explores the sensitivity of the risk measures to the type of copula
(Gaussian copula versus t copula) used for the simulation.

Load and Examine Portfolio Data

The portfolio contains 100 counterparties and their associated credit exposures at default
(EAD), probability of default (PD), and loss given default (LGD). Using a creditCopula
object, you can simulate defaults and losses over some fixed time period (for example, one
year). The EAD, PD, and LGD inputs must be specific to a particular time horizon.

In this example, each counterparty is mapped onto two underlying credit factors with a
set of weights. The Weights2F variable is a NumCounterparties-by-3 matrix, where
each row contains the weights for a single counterparty. The first two columns are the
weights for the two credit factors and the last column is the idiosyncratic weights for
each counterparty. A correlation matrix for the two underlying factors is also provided in
this example (FactorCorr2F).

load CreditPortfolioData.mat

whos EAD PD LGD Weights2F FactorCorr2F

  Name                Size            Bytes  Class     Attributes

  EAD               100x1               800  double              

  FactorCorr2F        2x2                32  double              

  LGD               100x1               800  double              

  PD                100x1               800  double              

  Weights2F         100x3              2400  double              
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Initialize the creditCopula object with the portfolio information and the factor
correlation.

rng('default');

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F);

% Change the VaR level to 99%.

cc.VaRLevel = 0.99;

disp(cc)

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9900

       PortfolioLosses: []

    CounterpartyLosses: []

cc.Portfolio(1:5,:)

ans = 

    ID     EAD         PD        LGD           Weights       

    __    ______    _________    ____    ____________________

    1     21.627    0.0050092    0.35    0.35       0    0.65

    2     3.2595     0.060185    0.35       0    0.45    0.55

    3     20.391      0.11015    0.55    0.15       0    0.85

    4     3.7534    0.0020125    0.35    0.25       0    0.75

    5     5.7193     0.060185    0.35    0.35       0    0.65

Simulate the Model and Plot Potential Losses

Simulate the multifactor model using the simulate function. By default, a Gaussian
copula is used. This function internally maps realized latent variables to default states
and computes the corresponding losses. After the simulation, the creditCopula object
populates the PortfolioLosses and CounterpartyLosses properties with the
simulation results.

cc = simulate(cc,1e5);

disp(cc)
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  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9900

       PortfolioLosses: [1×100000 double]

    CounterpartyLosses: [100×100000 double]

The portfolioRisk function returns risk measures for the total portfolio loss
distribution, and optionally, their respective confidence intervals. The value-at-risk
(VaR) and conditional value-at-risk (CVaR) are reported at the level set in the VaRLevel
property for the creditCopula object.

[pr,pr_ci] = portfolioRisk(cc);

fprintf('Portfolio risk measures:\n');

disp(pr)

fprintf('\n\nConfidence intervals for the risk measures:\n');

disp(pr_ci)

Portfolio risk measures:

      EL       Std       VaR      CVaR 

    ______    ______    ______    _____

    24.768    23.667    102.21    120.9

Confidence intervals for the risk measures:

           EL                 Std                 VaR                 CVaR      

    ________________    ________________    ________________    ________________

    24.621    24.914    23.564    23.771    101.12    103.32    119.78    122.01

Look at the distribution of portfolio losses. The expected loss (EL), VaR, and CVaR are
marked as the vertical lines. The economic capital, given by the difference between the
VaR and the EL, is shown as the shaded area between the EL and the VaR.

histogram(cc.PortfolioLosses)

title('Portfolio Losses');

xlabel('Losses ($)')

ylabel('Frequency')

4-13



4 Corporate Credit Risk Simulations for Portfolios

hold on

% Overlay the risk measures on the histogram.

xlim([0 1.1 * pr.CVaR])

plotline = @(x,color) plot([x x],ylim,'LineWidth',2,'Color',color);

plotline(pr.EL,'b');

plotline(pr.VaR,'r');

cvarline = plotline(pr.CVaR,'m');

% Shade the areas of expected loss and economic capital.

plotband = @(x,color) patch([x fliplr(x)],[0 0 repmat(max(ylim),1,2)],...

    color,'FaceAlpha',0.15);

elband = plotband([0 pr.EL],'blue');

ulband = plotband([pr.EL pr.VaR],'red');

legend([elband,ulband,cvarline],...

    {'Expected Loss','Economic Capital','CVaR (99%)'},...

    'Location','north');
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Find Concentration Risk for Counterparties

Find the concentration risk in the portfolio using the riskContribution function.
riskContribution returns the contribution of each counterparty to the portfolio EL
and CVaR. These additive contributions sum to the corresponding total portfolio risk
measure.

rc = riskContribution(cc);

% Risk contributions are reported for EL and CVaR.

rc(1:5,:)
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ans = 

    ID       EL          CVaR   

    __    _________    _________

    1      0.038907     0.090834

    2      0.068209      0.24527

    3        1.2473       2.6579

    4     0.0025223    0.0065685

    5       0.11905      0.28625

Find the riskiest counterparties by their CVaR contributions.

[rc_sorted,idx] = sortrows(rc,'CVaR','descend');

rc_sorted(1:5,:)

ans = 

    ID      EL        CVaR 

    __    _______    ______

    89     2.2752    8.6709

    96     1.3172    7.3477

    22     1.5716    7.2763

    16     1.6156    7.2421

    66    0.85578    7.1286

Plot the counterparty exposures and CVaR contributions. The counterparties with the
highest CVaR contributions are plotted in red and orange.

figure;

pointSize = 50;

colorVector = rc_sorted.CVaR;

scatter(cc.Portfolio(idx,:).EAD, rc_sorted.CVaR,...

    pointSize,colorVector,'filled')

colormap('jet')

title('CVaR Contribution vs. Exposure')

xlabel('Exposure')

ylabel('CVaR Contribution')

grid on
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Investigate Simulation Convergence with Confidence Bands

Use the confidenceBands function to investigate the convergence of the simulation.
By default, the CVaR confidence bands are reported, but confidence bands for all risk
measures are supported using the optional RiskMeasure argument.

cb = confidenceBands(cc);

% The confidence bands are stored in a table.

cb(1:5,:)

ans = 
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    NumScenarios    Lower      CVaR     Upper 

    ____________    ______    ______    ______

    1000            110.94     117.8    124.66

    2000            111.69    116.32    120.95

    3000            114.45    119.56    124.66

    4000            117.41    122.66     127.9

    5000            116.99    121.39    125.79

Plot the confidence bands to see how quickly the estimates converge.

figure;

plot(...

    cb.NumScenarios,...

    cb{:,{'Upper' 'CVaR' 'Lower'}},...

    'LineWidth',2);

title('CVaR: 95% Confidence Interval vs. # of Scenarios');

xlabel('# of Scenarios');

ylabel('CVaR + 95% CI')

legend('Upper Band','CVaR','Lower Band');

grid on
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Find the necessary number of scenarios to achieve a particular width of the confidence
bands.

width = (cb.Upper - cb.Lower) ./ cb.CVaR;

figure;

plot(cb.NumScenarios,width * 100,'LineWidth',2);

title('CVaR: 95% Confidence Interval Width vs. # of Scenarios');

xlabel('# of Scenarios');

ylabel('Width of CI as %ile of Value')

grid on

% Find point at which the confidence bands are within 1% (two sided) of the

% CVaR.
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thresh = 0.02;

scenIdx = find(width <= thresh,1,'first');

scenValue = cb.NumScenarios(scenIdx);

widthValue = width(scenIdx);

hold on

plot(xlim,100 * [widthValue widthValue],...

    [scenValue scenValue], ylim,...

    'LineWidth',2);

title('Scenarios Required for Confidence Interval with 2% Width');
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Compare Tail Risk for Gaussian and t Copulas

Switching to a t copula increases the default correlation between counterparties. This
results in a fatter tail distribution of portfolio losses, and in higher potential losses in
stressed scenarios.

Rerun the simulation using a t copula and compute the new portfolio risk measures. The
default degrees of freedom (dof) for the t copula is five.

cc_t = simulate(cc,1e5,'Copula','t');

pr_t = portfolioRisk(cc_t);

See how the portfolio risk changes with the t copula.

fprintf('Portfolio risk with Gaussian copula:\n');

disp(pr)

fprintf('\n\nPortfolio risk with t copula (dof = 5):\n');

disp(pr_t)

Portfolio risk with Gaussian copula:

      EL       Std       VaR      CVaR 

    ______    ______    ______    _____

    24.768    23.667    102.21    120.9

Portfolio risk with t copula (dof = 5):

      EL       Std       VaR       CVaR 

    ______    ______    ______    ______

    24.688    38.673    183.74    249.31

Compare the tail losses of each model.

% Plot the Gaussian copula tail.

figure;

subplot(2,1,1)

p1 = histogram(cc.PortfolioLosses);

hold on

plotline(pr.VaR,[1 0.5 0.5])

plotline(pr.CVaR,[1 0 0])

xlim([0.8 * pr.VaR  1.2 * pr_t.CVaR]);

ylim([0 1000]);
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grid on

legend('Loss Distribution','VaR','CVaR')

title('Portfolio Losses with Gaussian Copula');

xlabel('Losses ($)');

ylabel('Frequency');

% Plot the t copula tail.

subplot(2,1,2)

p2 = histogram(cc_t.PortfolioLosses);

hold on

plotline(pr_t.VaR,[1 0.5 0.5])

plotline(pr_t.CVaR,[1 0 0])

xlim([0.8 * pr.VaR  1.2 * pr_t.CVaR]);

ylim([0 1000]);

grid on

legend('Loss Distribution','VaR','CVaR');

title('Portfolio Losses with t Copula (dof = 5)');

xlabel('Losses ($)');

ylabel('Frequency');
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The tail risk measures VaR and CVaR are significantly higher using the t copula with
five degrees of freedom. The default correlations are higher with t copulas, therefore
there are more scenarios where multiple counterparties default. The number of degrees
of freedom plays a significant role. For very high degrees of freedom, the results with
the t copula are similar to the results with the Gaussian copula. Five is a very low
number of degrees of freedom and, consequentially, the results show striking differences.
Furthermore, these results highlight that the potential for extreme losses are very
sensitive to the choice of copula and the number of degrees of freedom.

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate
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Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
• creditCopula
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Binning Explorer
Bin data and export into a creditscorecard object

Description
The Binning Explorer app enables you to manage binning categories for a
creditscorecard object. After creating a table of data in your MATLAB workspace, or
after using creditscorecard to create a creditscorecard object, use the Binning
Explorer to:

• Select an automatic binning algorithm.
• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

Open the Binning Explorer App

• MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app
icon.

• MATLAB command prompt: Enter binningExplorer.

Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Binning Explorer Case Study Example” on page 3-26
• “Case Study for a Credit Scorecard Analysis”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-44

More About
• “Overview of Binning Explorer” on page 3-2
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• “Credit Scorecard Modeling Workflow”
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 30 sec)

See Also

Functions
creditscorecard

Introduced in R2016b
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creditCopula
Simulate and analyze multifactor credit default model

Description

The creditCopula class simulates portfolio losses due to counterparty defaults using
a multifactor model. The inputs to the model describe the credit-sensitive portfolio of
exposures:

• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default (1 − Recovery)
• Weights — Factor and idiosyncratic model weights

After the creditCopula object is created using the creditCopula function, use
the simulate function to simulate credit defaults using the multifactor model. The
results are stored in the form of a distribution of losses at the portfolio and counterparty
level. Several risk measures at the portfolio level are calculated, as well as the risk
contributions from individual obligors. The model calculates:

• The full simulated distribution of portfolio losses across scenarios
• The losses on each counterparty across scenarios
• Several risk measures (VaR, CVaR, EL, Std) with confidence intervals
• Risk contributions per counterparty (for EL and CVaR)

Create Object

To create a creditCopula object, use the creditCopula function.

Properties

Portfolio — Details of credit portfolio
table
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Details of credit portfolio, specified as a MATLAB table that contains all the portfolio
data that was passed as input into the creditCopula constructor.

The Portfolio table has a column for each of the constructor inputs (EAD, PD, LGD,
Weights, and ID). Each row of the table represents one counterparty.

For example:

    ID     EAD         PD          LGD       Weights 

    __    ______    _________    _______    _________

    1     122.43     0.064853    0.68024    0.3  0.7

    2     70.386     0.073957    0.59256    0.3  0.7

    3     79.281     0.066235    0.52383    0.3  0.7

    4     113.42      0.01466    0.43977    0.3  0.7

    5     100.46    0.0042036    0.41838    0.3  0.7

Data Types: table

FactorCorrelation — Correlation matrix for credit factors
matrix

Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors
matrix. Specify the correlation matrix using the optional name-value pair argument
FactorCorrelation with the creditCopula constructor.

Data Types: double

VaRLevel — Value at Risk Level
numeric between 0 and 1

Value at risk level used when reporting VaR and CVaR, specified using an optional
name-value pair argument 'VaRLevel' with the creditCopula constructor.

Data Types: double

PortfolioLosses — Total portfolio losses
vector

Total portfolio losses, specified as a NumScenarios-by-1 vector. The PortfolioLosses
property is empty after construction with the creditCopula constructor. After the
simulate function is invoked, the PortfolioLosses property is populated with the
vector of portfolio losses.
Data Types: double

5-5



5 Functions — Alphabetical List

CounterpartyLosses — Individual counterparty losses across all scenarios
sparse matrix

Individual counterparty losses across all scenarios, specified as a NumCounterparties-
by-NumScenarios sparse matrix of counterparty losses. The CounterpartyLosses
property is empty after construction with the creditCopula constructor. After the
simulate function is invoked, it is populated with the losses for each counterparty over
each scenario. This matrix can become large, and for this reason it is stored as a sparse
matrix.
Data Types: double

Object Functions
creditCopula Create creditCopula object
simulate Simulate credit defaults using a

creditCopula object
portfolioRisk Generate portfolio-level risk measurements
riskContribution Generate risk contributions for each

counterparty in portfolio
confidenceBands Confidence interval bands

Examples

Create a creditCopula Object and Simulate Credit Portfolio Losses

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]
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     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9500

       PortfolioLosses: []

    CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Simulate 100,000 scenarios and view the portfolio risk measures.

 cc = simulate(cc,1e5)

 portRisk = portfolioRisk(cc)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9900

       PortfolioLosses: [1×100000 double]

    CounterpartyLosses: [100×100000 double]

portRisk = 

      EL       Std       VaR      CVaR 

    ______    ______    ______    _____

    24.768    23.667    102.21    120.9

View a histogram of the portfolio losses.

histogram(cc.PortfolioLosses);

title('Distribution of Portfolio Losses');
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For further analysis, use the simulate, portfolioRisk, and riskContribution
functions with the creditCopula object.

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.
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Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditCopula | portfolioRisk | riskContribution |
simulate | table

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

Introduced in R2016b
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creditCopula

Create creditCopula object

Syntax

cc = creditCopula(EAD,PD,LGD,Weights)

cc = creditCopula( ___ ,Name,Value)

Description

cc = creditCopula(EAD,PD,LGD,Weights) creates a creditCopula object. For
more information on using a creditCopula object, see creditCopula.

cc = creditCopula( ___ ,Name,Value) adds optional name-value pair arguments.
For more information on using a creditCopula object, see creditCopula.

Examples

Create a creditCopula Object and Simulate Credit Portfolio Losses

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]
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              VaRLevel: 0.9500

       PortfolioLosses: []

    CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Simulate 100,000 scenarios and view the portfolio risk measures.

 cc = simulate(cc,1e5)

 portRisk = portfolioRisk(cc)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9900

       PortfolioLosses: [1×100000 double]

    CounterpartyLosses: [100×100000 double]

portRisk = 

      EL       Std       VaR      CVaR 

    ______    ______    ______    _____

    24.768    23.667    102.21    120.9

View a histogram of the portfolio losses.

histogram(cc.PortfolioLosses);

title('Distribution of Portfolio Losses');
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For further analysis, use the simulate, portfolioRisk, and riskContribution
functions with the creditCopula object.

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

EAD — Exposure at default
numeric vector
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Exposure at default, specified as a NumCounterparties-by-1 vector of credit exposures.

Note: The creditCopula model simulates defaults and losses over some fixed
time period (for example, one year). The counterparty exposures (EAD) and default
probabilities (PD) must both be specific to a particular time.

Data Types: double

PD — Probability of default
numeric vector with elements between 0 and 1

Probability of default, specified as a NumCounterparties-by-1 numeric vector with
elements between 0 and 1, representing the default probabilities for the counterparties.

Note: The creditCopula model simulates defaults and losses over some fixed
time period (for example, one year). The counterparty exposures (EAD) and default
probabilities (PD) must both be specific to a particular time.

Data Types: double

LGD — Loss given default
numeric vector with elements between 0 and 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with
elements between 0 and 1, representing the fraction of exposure that is lost when a
counterparty defaults. LGD is defined as (1 − Recovery). For example, a LGD of 0.6 implies
a 40% recovery rate in the event of a default.
Data Types: double

Weights — Factor and idiosyncratic weights
array of factor and idiosyncratic weights

Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors
+ 1) array. Each row contains the factor weights for a particular counterparty.
Each column contains the weights for an underlying risk factor. The last column in
Weights contains the idiosyncratic risk weight for each counterparty. The idiosyncratic
weight represents the company-specific credit risk. The total of the weights for each
counterparty (that is, each row) must sum to 1.
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For example, if a counterparty’s creditworthiness was composed of 60% US, 20%
European, and 20% idiosyncratic, then the Weights vector would be [0.6 0.2 0.2].

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: cc = creditCopula(EAD,PD,LGD,Weights,'VaRLevel',0.99)

'ID' — User-defined IDs for counterparties
ID is numeric vector (default) | vector

User-defined IDs for counterparties, specified as a NumCounterparties-by-1 vector
of IDs for each counterparty. ID is used to identify exposures in the Portfolio table
and the risk contribution table. ID must be a numeric, a string array, or a cell array of
character vectors. If unspecified, ID defaults to a numeric vector.

Data Types: double | string | cell

'VaRLevel' — Value at risk level
0.95 (default) | decimal

Value at risk level (used for reporting VaR and CVaR) specified as a decimal.

Data Types: double

'FactorCorrelation' — Factor correlation matrix
identity matrix (default) | correlation matrix

Factor correlation matrix, specified as a NumFactors-by-NumFactors matrix that
defines the correlation between the risk factors. If not specified, the factor correlation
matrix defaults to an identity matrix, meaning that factors are not correlated.
Data Types: double
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Output Arguments

cc — creditCopula object
object

creditCopula object contains the provided portfolio data, that is stored in the
Portfolio property.

The Portfolio property is a table that has a column for each of the constructor inputs
(EAD, PD, LGD, Weights, and ID). Each row of the Portfolio table represents one
counterparty.

The creditCopula object has the following properties:

• Portfolio:

A table with the following variables:

• ID — An ID to identify each counterparty
• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default
• Weights — Factor and idiosyncratic weights for counterparties

• FactorCorrelation:

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the
correlation between the risk factors.

• VaRLevel:

The value-at-risk level, used when reporting VaR and CVaR.
• PortfolioLosses

Portfolio losses, a NumScenarios-by-1 vector of portfolio losses. This property is
empty until the simulate function is used.

• CounterpartyLosses

Counterparty losses, a NumCounterparties-by-NumScenarios sparse matrix of
individual counterparty losses across the scenarios. This property is empty until the
simulate function is used.
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For more information on creditCopula objects, see creditCopula.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
• creditCopula

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | portfolioRisk | riskContribution | simulate | table

Introduced in R2016b
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confidenceBands

Confidence interval bands

Syntax

cbTable = confidenceBands(cc)

cbTable = confidenceBands(cc,Name,Value)

Description

cbTable = confidenceBands(cc) returns a table of the requested risk measure
and its associated confidence bands. confidenceBands is used to investigate how the
values of a risk measure and its associated confidence interval converge as the number
of scenarios increases. The simulate function must be run before confidenceBands is
used. For more information on using a creditCopula object, see creditCopula.

cbTable = confidenceBands(cc,Name,Value) adds optional name-value pair
arguments. The simulate function must be run before confidenceBands is used. For
more information on using a creditCopula object, see creditCopula.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk Measure for a
creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
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cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9500

       PortfolioLosses: []

    CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function before running confidenceBands. Use confidenceBands
with the creditCopula object to generate the cbTable.

cc = simulate(cc,1e5);

cbTable = confidenceBands(cc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9);

cbTable(1:10,:)

ans = 

    NumScenarios    Lower      Std      Upper 

    ____________    ______    ______    ______

     1000           23.008    23.852    24.766

     2000           22.922    23.517    24.146

     3000           23.159     23.65    24.164

     4000           23.762    24.198    24.652

     5000           23.646    24.035    24.437

     6000           23.788    24.145    24.513

     7000           23.709    24.038    24.377

     8000           23.496    23.801    24.115

     9000            23.43    23.717    24.012

    10000             23.5    23.773    24.053

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11
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Input Arguments

cc — creditCopula object
object

creditCopula object, specified using the updated creditCopula object obtained from
running the simulate function, which must be run before confidenceBands is used.

For more information on creditCopula objects, see creditCopula.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: cbTable =
confidenceBands(cc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.92,'NumPoints',500)

'RiskMeasure' — Risk measure to investigate
CVaR (default) | character vector with values 'EL', 'Std', 'VaR', or 'CVaR'

Risk measure to investigate, specified as character vector with possible values:

• 'EL' — Expected loss, the mean of portfolio losses
• 'Std' — Standard deviation of the losses
• 'VaR' — Value at risk at the threshold specified by the VaRLevel property of the

creditCopula object
• 'CVaR' — Conditional VaR at the threshold specified by the VaRLevel property of

the creditCopula object

Data Types: char

'ConfidenceIntervalLevel' — Confidence interval level
0.95 (default) | decimal

Confidence interval level, specified as a decimal. For example, if you specify 0.95, a 95%
confidence interval is reported in the output table (cbTable).

Data Types: double
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'NumPoints' — Number of scenario samples to report
100 (default) | nonnegative integer

Number of scenario samples to report, specified as a nonnegative integer. The default is
100, meaning confidence bands are reported at 100 evenly spaced points of increasing
sample size ranging from 0 to the total number of simulated scenarios.

Note: NumPoints must be a numeric scalar greater than 1, and is typically much
smaller than total number of scenarios simulated. confidenceBands should be used
to obtain a qualitative idea of how fast a risk measure and its confidence interval are
converging. Specifying a large value for NumPoints is not recommended and could cause
performance issues with confidenceBands.

Data Types: double

Output Arguments
cbTable — Requested risk measure and associated confidence bands
table

Requested risk measure and associated confidence bands at each of the NumPoints
scenario sample sizes, returned as a table containing the following columns:

• NumScenarios — Number of scenarios at the sample point
• Lower — Lower confidence band
• RiskMeasure — Requested risk measure where the column takes its name from

whatever risk measure is requested with the optional input RiskMeasure
• Upper — Upper confidence band

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.
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Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
creditCopula | portfolioRisk | riskContribution | simulate | table

Introduced in R2016b
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portfolioRisk
Generate portfolio-level risk measurements

Syntax

[riskMeasures,confidenceIntervals] = portfolioRisk(cc)

[riskMeasures,confidenceIntervals] = portfolioRisk(cc,Name,Value)

Description

[riskMeasures,confidenceIntervals] = portfolioRisk(cc) returns tables of
risk measurements for the portfolio losses. The simulate function must be run before
portfolioRisk is used. For more information on using a creditCopula object, see
creditCopula.

[riskMeasures,confidenceIntervals] = portfolioRisk(cc,Name,Value)

adds an optional name-value pair argument for ConfidenceIntervalLevel. The
simulate function must be run before portfolioRisk is used.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]
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     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9500

       PortfolioLosses: []

    CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function before running portfolioRisk. Then use
portfolioRisk with the creditCopula object to generate the riskMeasure and
ConfidenceIntervals tables.

cc = simulate(cc,1e5);

[riskMeasure,confidenceIntervals] = portfolioRisk(cc,'ConfidenceIntervalLevel',0.9)

riskMeasure = 

      EL       Std       VaR      CVaR 

    ______    ______    ______    _____

    24.768    23.667    102.21    120.9

confidenceIntervals = 

           EL                 Std                VaR                 CVaR      

    ________________    _______________    ________________    ________________

    24.645    24.891    23.58    23.755    101.29    103.14    119.96    121.83

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

cc — creditCopula object
object
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creditCopula object, specified as an updated creditCopula object obtained by
running the simulate function, which must be run before portfolioRisk is used.

For more information on creditCopula objects, see creditCopula.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [riskMeasure,confidenceIntervals] =
portfolioRisk(cc,'ConfidenceIntervalLevel',0.92)

'ConfidenceIntervalLevel' — Confidence interval level
0.95 (default) | decimal

Confidence interval level, specified as a decimal. For example, if you specify 0.95, a 95%
confidence interval is reported in the output table (riskMeasures).

Data Types: double

Output Arguments

riskMeasures — Risk measures
table

Risk measures, returned as a table containing the following columns:

• EL — Expected loss, the mean of portfolio losses
• Std — Standard deviation of the losses
• VaR — Value at risk at the threshold specified by the VaRLevel property of the

creditCopula object
• CVaR — Conditional VaR at the threshold specified by the VaRLevel property of the

creditCopula object

confidenceIntervals — Confidence intervals
table
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Confidence intervals, returned as a table of confidence intervals corresponding to the
portfolio risk measures reported in the riskMeasures table. Confidence intervals are
reported at the level specified by the ConfidenceIntervalLevel parameter.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditCopula | riskContribution | simulate | table

Introduced in R2016b
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riskContribution
Generate risk contributions for each counterparty in portfolio

Syntax

riskContributions = riskContribution(cc)

Description

riskContributions = riskContribution(cc) returns a table of risk contributions
for each counterparty in the portfolio. The riskContributions table allocates the
full portfolio risk measures to each counterparty, such that the counterparty risk
contributions sum to the portfolio risks reported by portfolioRisk.

For more information on using a creditCopula object, see creditCopula.

Examples

Determine the Risk Contribution for Each Counterparty for a creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9500
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       PortfolioLosses: []

    CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function before running riskContribution. Then
use riskContribution with the creditCopula object to generate the
riskContributions.

cc = simulate(cc,1e5);

riskContributions = riskContribution(cc);

riskContributions(1:10,:)

ans = 

    ID        EL          CVaR   

    __    __________    _________

     1      0.038907     0.090834

     2      0.068209      0.24527

     3        1.2473       2.6579

     4     0.0025223    0.0065685

     5       0.11905      0.28625

     6       0.12397        0.521

     7       0.83246       1.8713

     8    0.00093656            0

     9       0.91591       4.0861

    10       0.24168       1.8591

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

cc — creditCopula object
object
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creditCopula object, specified as an updated creditCopula object obtained by
running the simulate function, which must be run before riskContribution is used.

For more information on creditCopula objects, see creditCopula.

Output Arguments

riskContributions — Risk contributions
table

Risk contributions, returned as a table containing the following risk contributions for
each counterparty:

• EL — The expected loss for the particular counterparty over the scenarios
• CVaR — The conditional value at risk for the particular counterparty over the

scenarios

The riskContributions table allocates the full portfolio risk measures to each
counterparty, such that the counterparty risk contributions sum to the portfolio risks
reported by portfolioRisk.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

References

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk
Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

Glasserman, P. “Measuring Marginal Risk Contributions in Credit Portfolios.” Journal of
Computational Finance. Vol. 9, No. 2, Winter 2005/2006.

Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.
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Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Kalkbrener, M., Lotter, H., and Overbeck, L. “Sensible and Efficient Capital Allocation
for Credit Portfolios.” Risk. 17, 2004, pp. S19–S24.

Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditCopula | portfolioRisk | simulate | table

Introduced in R2016b
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simulate
Simulate credit defaults using a creditCopula object

Syntax

cc = simulate(cc,NumScenarios)

cc = simulate( ___ ,Name,Value)

Description

cc = simulate(cc,NumScenarios) performs the full simulation of credit scenarios
and computes defaults and losses for the portfolio defined in the creditCopula object.

For more information on using a creditCopula object, see creditCopula.

cc = simulate( ___ ,Name,Value) adds optional name-value pair arguments for
(Copula, DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditCopula object with a two-factor model.

cc = creditCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]
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     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9500

       PortfolioLosses: []

    CounterpartyLosses: []

Set the VaRLevel to 99%.

cc.VaRLevel = 0.99;

Use the simulate function with the creditCopula object. After using simulate,
you can then use the portfolioRisk, riskContribution, and confidenceBands
functions with the updated creditCopula object.

cc = simulate(cc,1e5,'Copula','t','DegreesOfFreedom',10)

cc = 

  creditCopula with properties:

             Portfolio: [100×5 table]

     FactorCorrelation: [2×2 double]

              VaRLevel: 0.9900

       PortfolioLosses: [1×100000 double]

    CounterpartyLosses: [100×100000 double]

For instance, you can use riskContribution with the creditCopula object to
generate the riskContributions.

riskContributions = riskContribution(cc);

riskContributions(1:10,:)

ans = 

    ID        EL          CVaR  

    __    __________    ________

     1      0.038756     0.62827

     2      0.068083     0.37989

     3          1.24      3.7233

     4     0.0027588    0.034156

     5       0.11941      0.5625
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     6       0.12628     0.74279

     7       0.83595      2.6062

     8    0.00075817    0.018731

     9       0.93719      5.4739

    10       0.25739      4.1895

• “Credit Simulation Using Copulas” on page 4-2
• “creditCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-11

Input Arguments

cc — creditCopula object
object

creditCopula object, obtained by running the creditCopula constructor.

For more information on a creditCopula object, see creditCopula.

NumScenarios — Number of scenarios to simulate
nonnegative integer

Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are
processed in blocks to conserve machine resources.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: obj=
simulate(obj,NumScenarios,'Copula','t','DegreesOfFreedom',5)

'Copula' — Type of copula
'Gaussian' (default) | character vector with values 'Gaussian' or 't'
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Type of copula, specified as a character vector with a value of:

• 'Gaussian' — A Gaussian copula
• 't' — A t copula with degrees of freedom specified using DegreesOfFreedom.

Data Types: char

'DegreesOfFreedom' — Degrees of freedom for t copula
5 degrees of freedom (default) | nonnegative numeric value

Degrees of freedom for a t copula, specified as a nonnegative numeric value. If Copula is
set to 'Gaussian', the DegreesOfFreedom parameter is ignored.

Data Types: double

'BlockSize' — Number of scenarios to process in each iteration
1e5/Number of counterparties (default) | nonnegative numeric value

Number of scenarios to process in each iteration, specified as a nonnegative numeric
value.
Data Types: double

Output Arguments

cc — Updated creditCopula object
object

Updated creditCopula object. The object is populated with the simulated
PortfolioLosses and CounterpartyLosses.

For more information on a creditCopula object, see creditCopula.

Note: In the simulate function, the Weights are transformed to ensure that the latent
variables have a mean of 0 and a variance of 1.

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
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See Also
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Introduced in R2016b
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varbacktest
Suite of value-at-risk (VaR) back tests

Description
The general workflow is:

1 Load or generate the data for the VaR backtesting analysis.
2 Create a varbacktest object using the varbacktest constructor.
3 Use the summary function to generate a summary report for the given data on the

number of observations and the number of failures.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• tl — Traffic light test
• bin — Binomial test
• pof — Proportion of failures
• tuff — Time until first failure
• cc — Conditional coverage mixed
• cci — Conditional coverage independence
• tbf — Time between failures mixed
• tbfi — Time between failures independence

For more information, see “VaR Backtesting Workflow” on page 2-8.

Create Object
To create a varbacktest (vbt) object, use the varbacktest function.

Properties
PortfolioData — Portfolio data for VaR backtesting analysis
numeric array
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Portfolio data for the VaR backtesting analysis, specified as a NumRows-by-1 numeric
array containing a copy of the portfolio data.
Data Types: double

VaRData — VaR data for VaR backtesting analysis
numeric array

VaR data for the VaR backtesting analysis, specified as a NumRows-by-NumVaRs numeric
array containing a copy of the VaR data.
Data Types: double

PortfolioID — Portfolio identifier
string

Portfolio identifier, specified as a string.
Data Types: string

VaRID — VaR identifier
string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the
corresponding columns in VaRData.

Data Types: string

VaRLevel — VaR level
numeric array with values between 0 and 1

VaR level, specified as a 1-by-NumVaRs numeric array containing the VaR levels for the
corresponding columns in VaRData.

Data Types: double

varbacktest Property Set or Modify Property
from Command Line Using
varbacktest Function

Modify Property Using Dot
Notation

PortfolioData Yes No
VaRData Yes No
PortfolioID Yes Yes
VaRID Yes Yes
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varbacktest Property Set or Modify Property
from Command Line Using
varbacktest Function

Modify Property Using Dot
Notation

VaRLevel Yes Yes

Object Functions
varbacktest Create varbacktest object using portfolio

outcomes data and corresponding value-at-
risk (VaR) data

tl Traffic light test for value-at-risk (VaR)
backtesting

bin Binomial test for value-at-risk (VaR)
backtesting

pof Proportion of failures test for value-at-risk
(VaR) backtesting

tuff Time until first failure test for value-at-risk
(VaR) backtesting

cc Conditional coverage mixed test for value-
at-risk (VaR) backtesting

cci Conditional coverage independence test for
value-at-risk (VaR) backtesting

tbf Time between failures mixed test for value-
at-risk (VaR) backtesting

tbfi Time between failures independence test for
value-at-risk (VaR) backtesting

summary Report on varbacktest data
runtests Run all tests in varbacktest

Examples

Create varbacktest Object and Run VaR Backtests for Single VaR at 95%

The varbacktest constructor takes in portfolio outcomes data and corresponding value-
at-risk (VaR) data and returns a varbacktest object.

Create a varbacktest object.

 load VaRBacktestData
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 vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property) and all
combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID,
and VaRLevel properties).

Run the tests using the vbt object.

 runtests(vbt)

ans = 

    PortfolioID    VaRID    VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    _____    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "Portfolio"    "VaR"    0.95        green    accept    accept    accept    accept    accept    reject    reject

Change the PortfolfioID and VaRID properties using dot notation. For more
information on creating a varbacktest object, see varbacktest.

vbt.PortfolioID = 'S&P'

vbt.VaRID = 'Normal at 95%'

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]
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      PortfolioID: "S&P"

            VaRID: "VaR"

         VaRLevel: 0.9500

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "S&P"

            VaRID: "Normal at 95%"

         VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

 runtests(vbt)

ans = 

    PortfolioID         VaRID         VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    _______________    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "S&P"          "Normal at 95%"    0.95        green    accept    accept    accept    accept    accept    reject    reject

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13
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University Press, 2005.
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Economics, 2009.

See Also
varbacktest

More About
• “Overview of VaR Backtesting” on page 2-2

Introduced in R2016b
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varbacktest
Create varbacktest object using portfolio outcomes data and corresponding value-at-
risk (VaR) data

Syntax

vbt = varbacktest(PortfolioData,VaRData)

vbt = varbacktest( ___ ,Name,Value)

Description

vbt = varbacktest(PortfolioData,VaRData) creates a varbacktest object
using portfolio outcomes data and corresponding value-at-risk (VaR) data. For more
information on using a vbt object, see varbacktest.

vbt = varbacktest( ___ ,Name,Value) adds optional name-value pair arguments.
For more information on using a vbt object, see varbacktest.

Examples

Run VaR Backtests for a Single VaR at 95%

Create a varbacktest object.

 load VaRBacktestData

 vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"
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         VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property) and all
combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID,
and VaRLevel properties).

Run the tests using the varbacktest object.

 runtests(vbt)

ans = 

    PortfolioID    VaRID    VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    _____    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "Portfolio"    "VaR"    0.95        green    accept    accept    accept    accept    accept    reject    reject

Change the PortfolfioID and VaRID properties using dot notation. For more
information on a varbacktest object, see varbacktest.

vbt.PortfolioID = 'S&P'

vbt.VaRID = 'Normal at 95%'

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "S&P"

            VaRID: "VaR"

         VaRLevel: 0.9500

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]
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      PortfolioID: "S&P"

            VaRID: "Normal at 95%"

         VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

 runtests(vbt)

ans = 

    PortfolioID         VaRID         VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    _______________    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "S&P"          "Normal at 95%"    0.95        green    accept    accept    accept    accept    accept    reject    reject

Run VaR Backtests for Multiple VaRs at Different Confidence Levels

Create a varbacktest object that has multiple VaR identifiers with different confidence
levels.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

Run the summary report for the varbacktest object.

 summary(vbt)

ans = 

    PortfolioID        VaRID         VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing

    ___________    ______________    ________    _____________    ____________    ________    ________    ______    ____________    _______

    "Equity"       "Normal95"        0.95        0.94535          1043            57          52.15        1.093     58             0      

    "Equity"       "Normal99"        0.99         0.9837          1043            17          10.43       1.6299    173             0      

    "Equity"       "Historical95"    0.95        0.94343          1043            59          52.15       1.1314     55             0      

    "Equity"       "Historical99"    0.99        0.98849          1043            12          10.43       1.1505    173             0      

    "Equity"       "EWMA95"          0.95        0.94343          1043            59          52.15       1.1314     28             0      
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    "Equity"       "EWMA99"          0.99        0.97891          1043            22          10.43       2.1093    143             0      

Run all tests using the varbacktest object.

 runtests(vbt)

ans = 

    PortfolioID        VaRID         VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    ______________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "Equity"       "Normal95"        0.95        green     accept    accept    accept    accept    accept    reject    reject

    "Equity"       "Normal99"        0.99        yellow    reject    accept    accept    accept    accept    accept    accept

    "Equity"       "Historical95"    0.95        green     accept    accept    accept    accept    accept    reject    reject

    "Equity"       "Historical99"    0.99        green     accept    accept    accept    accept    accept    accept    accept

    "Equity"       "EWMA95"          0.95        green     accept    accept    accept    accept    accept    accept    accept

    "Equity"       "EWMA99"          0.99        yellow    reject    reject    accept    reject    accept    reject    accept

Run the traffic light test (tl) using the varbacktest object.

 tl(vbt)

ans = 

    PortfolioID        VaRID         VaRLevel      TL      Probability      TypeI      Increase    Observations    Failures

    ___________    ______________    ________    ______    ___________    _________    ________    ____________    ________

    "Equity"       "Normal95"        0.95        green     0.77913          0.26396          0     1043            57      

    "Equity"       "Normal99"        0.99        yellow    0.97991          0.03686    0.26582     1043            17      

    "Equity"       "Historical95"    0.95        green     0.85155          0.18232          0     1043            59      

    "Equity"       "Historical99"    0.99        green     0.74996          0.35269          0     1043            12      

    "Equity"       "EWMA95"          0.95        green     0.85155          0.18232          0     1043            59      

    "Equity"       "EWMA99"          0.99        yellow    0.99952        0.0011122    0.43511     1043            22      

Run VaR Backtests for Multiple Portfolios and Concatenate Results

Use the varbacktest constructor with table inputs and name-value pair arguments
to create two varbacktest objects and run the concatenated summary report. The
varbacktest constructor uses the variable names in the table inputs as PortfolioID
and VaRID.
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load VaRBacktestData

vbtE = varbacktest(DataTable(:,2),DataTable(:,3:4),'VaRLevel',[0.95 0.99]);

vbtD = varbacktest(DataTable(:,5),DataTable(:,6:7),'VaRLevel',[0.95 0.99]);

[summary(vbtE); summary(vbtD)]

ans = 

     PortfolioID           VaRID           VaRLevel    ObservedLevel    Observations    Failures    Expected     Ratio     FirstFailure    Missing

    _____________    __________________    ________    _____________    ____________    ________    ________    _______    ____________    _______

    "Equity"         "VaREquity95"         0.95        0.94343          1043            59          52.15        1.1314     28             0      

    "Equity"         "VaREquity99"         0.99        0.97891          1043            22          10.43        2.1093    143             0      

    "Derivatives"    "VaRDerivatives95"    0.95        0.95014          1043            52          52.15       0.99712      9             0      

    "Derivatives"    "VaRDerivatives99"    0.99        0.97028          1043            31          10.43        2.9722     28             0      

Run all the tests and concatenate the results.

[runtests(vbtE); runtests(vbtD)]

ans = 

     PortfolioID           VaRID           VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    _____________    __________________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "Equity"         "VaREquity95"         0.95        green     accept    accept    accept    accept    accept    accept    accept

    "Equity"         "VaREquity99"         0.99        yellow    reject    reject    accept    reject    accept    reject    accept

    "Derivatives"    "VaRDerivatives95"    0.95        green     accept    accept    accept    accept    accept    reject    reject

    "Derivatives"    "VaRDerivatives99"    0.99        red       reject    reject    accept    reject    accept    reject    reject

Run the pof test and concatenate the results.

 [pof(vbtE); pof(vbtD)]

ans = 

     PortfolioID           VaRID           VaRLevel     POF      LRatioPOF     PValuePOF     Observations    Failures    TestLevel

    _____________    __________________    ________    ______    __________    __________    ____________    ________    _________

    "Equity"         "VaREquity95"         0.95        accept       0.91023       0.34005    1043            59          0.95     

    "Equity"         "VaREquity99"         0.99        reject        9.8298     0.0017171    1043            22          0.95     
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    "Derivatives"    "VaRDerivatives95"    0.95        accept    0.00045457       0.98299    1043            52          0.95     

    "Derivatives"    "VaRDerivatives99"    0.99        reject        26.809    2.2457e-07    1043            31          0.95     

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table

Portfolio outcomes data, specified as a NumRows-by-1 numeric array or NumRows-by-1
table with a numeric column containing portfolio outcomes data. PortfolioData can
be expressed as returns, or alternatively as profits and losses. There are no validations
in the tool regarding the units of portfolio or VaR data. It is the user's responsibility to
provide the portfolio and VaR data in the same units.

Missing values (NaNs in the PortfolioData) are discarded before applying the tests.
Therefore, a different number of observations is reported (NumObs) for series with
different number of missing values. The reported number of observations (NumObs)
equals the original number of rows in the data (NumRows) minus the number of periods
with missing values.
Data Types: double | table

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric
columns

Value-at-risk (VaR) data, specified using a NumRows-by-NumVaRs numeric array, or
NumRows-by-NumVaRs table with numeric columns.

VaRData data must be in the same units PortfolioData. There are no validations in
the tool regarding the units of portfolio or VaR data. These may be expressed as returns,
or alternatively as profits and losses. It is the user's responsibility to provide the portfolio
and VaR data in the same units.

If VaRData has more than one column (NumVaRs> 1), the PortfolioData is tested
against each column in VaRData. By default, a 0.95 VaR confidence level is used for all
columns in VaRData. (Use VaRLevel to specify different VaR confidence levels.)

5-46



 varbacktest

The convention is that VaR is a positive amount. Therefore, a failure is recorded when
the loss (the negative of the portfolio data) exceeds the VaR, that is, when

 -PortfolioData > VaRData

For example, a VaR of one million (positive) is violated whenever there is an outcome
worse than a one-million loss (the negative of the portfolio outcome, or loss, is larger than
the VaR).

Negative VaRData values are allowed, however negative VaR values indicate a highly
profitable portfolio that cannot lose money at the given VaR confidence level. That is, the
worst-case scenario at the given confidence level is still a profit.

Missing values (NaNs in VaRData) are discarded before applying the tests. Therefore, a
different number of observations is reported (NumObs) for series with different number
of missing values. The reported number of observations (NumObs) equals the original
number of rows in the data (NumRows) minus the number of periods with missing values.

Example:
Data Types: double | table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: vbt =
varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100','VaRID','TotalVaR','VaRLevel',.99)

'PortfolioID' — User-defined ID for PortfolioData input
character vector | string

User-defined ID for PortfolioData input, specified as a character vector or string.

If PortfolioData is a numeric array, the default value for PortfolioID is
'Portfolio'. If PortfolioData is a table, PortfolioID is set by default to the
corresponding variable name in the table.
Data Types: char | string
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'VaRID' — VaR identifier for VaRData columns
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified using a character vector or string.
Multiple VaRIDs are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of
character vectors or string vector with user-defined IDs for the VaRData columns.

If VaRData is a numeric array, the default value for VaRID is 'VaR'. If NumVaRs = 1
or NumVaRs > 1, the default value is 'VaR1', 'VaR2', and so on. If VaRData is a table,
'VaRID' is set by default to the corresponding variable names in the table

Data Types: char | cell | string

'VaRLevel' — VaR confidence level
0.95 (default) | numeric with values between 0 and 1 | numeric array with values
between 0 and 1

VaR confidence level, specified as a numeric between 0 and 1 or a 1-by-NumVaRs numeric
array with values between 0 and 1 for the corresponding columns in VaRData.

Data Types: double

Output Arguments

vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given portfolio data and VaR data (the
PortfolioData and VaRData properties) and all combinations of portfolio ID, VaR ID,
and VaR level to be tested (the PortfolioID, VaRID, and VarLevel properties). For
more information on a vbt object, see varbacktest.

The vbt object has the following properties:

• PortfolioData — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData — NumRows-by-NumVaRs numeric array containing a copy of the VaRData
• PortfolioID — String containing the PortfolioID
• VaRID — 1-by-NumVaRs string vector containing the VaRIDs for the corresponding

columns in VaRData
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• VaRLevel — 1-by-NumVaRs numeric array containing the VaRLevels for the
corresponding columns in VaRData.

More About
• varbacktest

References

Basel Committee on Banking Supervision, Supervisory Framework for the Use of
'Backtesting' in Conjunction with the Internal Models Approach to Market Risk Capital
Requirements. January, 1996, http://www.bis.org/publ/bcbs22.htm.

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

Cogneau, P. “Backtesting Value-at-Risk: How Good is the Model?" Intelligent Risk,
PRMIA, July, 2015.

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.

McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton
University Press, 2005.

Nieppola, O. “Backtesting Value-at-Risk Models.” Master's Thesis, Helsinki School of
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See Also
bin | cc | cci | pof | runtests | summary | table | tbf | tbfi | tl | tuff

Introduced in R2016b
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bin
Binomial test for value-at-risk (VaR) backtesting

Syntax

TestResults = bin(vbt)

TestResults = bin(vbt,Name,Value)

Description

TestResults = bin(vbt) generates the binomial test results for value-at-risk (VaR)
backtesting.

TestResults = bin(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate Bin Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

Generate the bin test results.
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TestResults = bin(vbt)

TestResults = 

    PortfolioID    VaRID    VaRLevel     Bin      ZScoreBin    PValueBin    Observations    Failures    TestLevel

    ___________    _____    ________    ______    _________    _________    ____________    ________    _________

    "Portfolio"    "VaR"    0.95        accept    0.68905      0.24539      1043            57          0.95     

Run Bin Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the bin test results using the TestLevel optional argument.

TestResults = bin(vbt,'TestLevel',0.90)

TestResults = 

    PortfolioID        VaRID         VaRLevel     Bin      ZScoreBin    PValueBin     Observations    Failures    TestLevel

    ___________    ______________    ________    ______    _________    __________    ____________    ________    _________
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    "Equity"       "Normal95"        0.95        accept    0.68905         0.24539    1043            57          0.9      

    "Equity"       "Normal99"        0.99        reject     2.0446        0.020448    1043            17          0.9      

    "Equity"       "Historical95"    0.95        accept     0.9732         0.16523    1043            59          0.9      

    "Equity"       "Historical99"    0.99        accept    0.48858         0.31257    1043            12          0.9      

    "Equity"       "EWMA95"          0.95        accept     0.9732         0.16523    1043            59          0.9      

    "Equity"       "EWMA99"          0.99        reject     3.6006      0.00015875    1043            22          0.9      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = bin(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — Bin test results
table
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Bin test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'Bin' — Categorical array with categories accept and reject that indicate the

result of the bin test
• 'ZScoreBin' — Z-score of the number of failures
• 'PValueBin' — P-value of the bin test
• 'Observations' — Number of observations
• 'Failures' — Number of failures.
• 'TestLevel' — Test confidence level.

Note: For bin test results, the terms accept and reject are used for convenience,
technically a bin test does not accept a model. Rather, the test fails to reject it.

More About

Binomial Test (Bin)

The bin function performs a binomial test to assess if the number of failures is
consistent with the VaR confidence level.

The binomial test is based on a normal approximation to the binomial distribution.

Algorithms

The result of the binomial test is based on a normal approximation to a binomial
distribution. Suppose:

• N is the number of observations.
• p = 1 – VaRLevel is the probability of observing a failure if the model is correct.
• x is the number of failures.
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If the failures are independent, then the number of failures is distributed as a binomial
distribution with parameters N and p. The expected number of failures is N*p, and the
standard deviation of the number of failures is sqrt(N*p*(1 - p)).

The test statistic for the bin test is the z-score, defined as:

  ZScoreBin = (x - N*p)/sqrt(N*p*(1 - p)).

The z-score is approximately follows a standard normal distribution. This approximation
is not reliable for small values of N or small values of p, but for typical uses in VaR
backtesting analyses (N = 250 or much larger, p in the range 1 – 10%) the approximation
gives results in line with other tests.

The p-value of the bin test is the probability that a standard normal distribution exceeds
the absolute value of the z-score

   PValueBin = 1 - F(|ZScoreBin|),

where F is the standard normal cumulative distribution. When too few failures are
observed, relative to the expected failures, PValueBin is (approximately) the probability
of observing that many failures or fewer. For too many failures, this is (approximately)
the probability of observing that many failures or more.
• “Binomial Test” on page 2-3
• varbacktest

References

Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

See Also
cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b
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cc

Conditional coverage mixed test for value-at-risk (VaR) backtesting

Syntax

TestResults = cc(vbt)

TestResults = cc(vbt,Name,Value)

Description

TestResults = cc(vbt) generates the conditional coverage (CC) mixed test for value-
at-risk (VaR) backtesting.

TestResults = cc(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate CC Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500
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Generate the cc test results.

TestResults = cc(vbt)

TestResults = 

    PortfolioID    VaRID    VaRLevel      CC      LRatioCC    PValueCC     POF      LRatioPOF    PValuePOF     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00    N10    N01    N11    TestLevel

    ___________    _____    ________    ______    ________    ________    ______    _________    _________    ______    _________    _________    ____________    ________    ___    ___    ___    ___    _________

    "Portfolio"    "VaR"    0.95        accept    0.72013     0.69763     accept    0.46147      0.49694      accept    0.25866      0.61104      1043            57          932    53     53     4      0.95     

Run the CC Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cc test results using the TestLevel optional input.

TestResults = cc(vbt,'TestLevel',0.90)
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TestResults = 

    PortfolioID        VaRID         VaRLevel      CC      LRatioCC    PValueCC      POF      LRatioPOF    PValuePOF     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00     N10    N01    N11    TestLevel

    ___________    ______________    ________    ______    ________    _________    ______    _________    _________    ______    _________    _________    ____________    ________    ____    ___    ___    ___    _________

    "Equity"       "Normal95"        0.95        accept    0.72013       0.69763    accept    0.46147        0.49694    accept     0.25866     0.61104      1043            57           932    53     53     4      0.9      

    "Equity"       "Normal99"        0.99        accept     4.0757       0.13031    reject     3.5118       0.060933    accept     0.56393     0.45268      1043            17          1008    17     17     0      0.9      

    "Equity"       "Historical95"    0.95        accept     1.0487       0.59194    accept    0.91023        0.34005    accept     0.13847     0.70981      1043            59           928    55     55     4      0.9      

    "Equity"       "Historical99"    0.99        accept     0.5073       0.77597    accept    0.22768        0.63325    accept     0.27962     0.59695      1043            12          1018    12     12     0      0.9      

    "Equity"       "EWMA95"          0.95        accept    0.95051       0.62173    accept    0.91023        0.34005    accept    0.040277     0.84094      1043            59           927    56     56     3      0.9      

    "Equity"       "EWMA99"          0.99        reject     10.779     0.0045645    reject     9.8298      0.0017171    accept     0.94909     0.32995      1043            22           998    22     22     0      0.9      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = cc(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double
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Output Arguments

TestResults — cc test results
table

cc test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'CC' — Categorical array with the categories accept and reject that indicate the

result of the cc test
• 'LRatioCC' — Likelihood ratio of the cc test
• 'PValueCC' — P-value of the cc test
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'CCI' — Categorical array with categories 'accept' and 'reject' that indicate

the result of the cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note: For cc test results, the terms accept and reject are used for convenience,
technically a cc test does not accept a model. Rather, the test fails to reject it.
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More About

Conditional Coverage (CC) Mixed Test

The cc function performs the conditional coverage mixed test, also known as
Christoffersen's interval forecasts method.

'Mixed' means that it combines a frequency and an independence test. The frequency
test is Kupiec's proportion of failures test, implemented by the pof function. The
independence test is the conditional coverage independence test implemented by the cci
function. This is a likelihood ratio test proposed by Christoffersen (1998) to assess the
independence of failures on consecutive time periods. The CC test combines the POF test
and the CCI test.

Algorithms

The likelihood ratio (test statistic) of the cc test is the sum of the likelihood ratios of the
pof and cci tests,

   LRatioCC = LRatioPOF + LRatioCCI

which is asymptotically distributed as a chi-square distribution with two degrees of
freedom. See the Algorithms section in pof and cci for the definition of their likelihood
ratios.

The p-value of the cc test is the probability that a chi-square distribution with two
degrees of freedom exceeds the likelihood ratio LRatioCC,

PValueCC = 1 - F(LRatioCC)

where F is the cumulative distribution of a chi-square variable with two degrees of
freedom.

The result of the cc test is to accept if

  F(LRatioCC) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
two degrees of freedom.
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• varbacktest
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References

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

See Also
bin | cci | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b
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cci
Conditional coverage independence test for value-at-risk (VaR) backtesting

Syntax

TestResults = cci(vbt)

TestResults = cci(vbt,Name,Value)

Description

TestResults = cci(vbt) generates the conditional coverage independence (CCI) for
value-at-risk (VaR) backtesting.

TestResults = cci(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate CCI Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

Generate the cci test results.
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TestResults = cci(vbt)

TestResults = 

    PortfolioID    VaRID    VaRLevel     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00    N10    N01    N11    TestLevel

    ___________    _____    ________    ______    _________    _________    ____________    ________    ___    ___    ___    ___    _________

    "Portfolio"    "VaR"    0.95        accept    0.25866      0.61104      1043            57          932    53     53     4      0.95     

Run the CCI Test for VaR Backtests for Multiple VaR's at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cci test results using the TestLevel optional input.

TestResults = cci(vbt,'TestLevel',0.90)

TestResults = 

    PortfolioID        VaRID         VaRLevel     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00     N10    N01    N11    TestLevel

    ___________    ______________    ________    ______    _________    _________    ____________    ________    ____    ___    ___    ___    _________
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    "Equity"       "Normal95"        0.95        accept     0.25866     0.61104      1043            57           932    53     53     4      0.9      

    "Equity"       "Normal99"        0.99        accept     0.56393     0.45268      1043            17          1008    17     17     0      0.9      

    "Equity"       "Historical95"    0.95        accept     0.13847     0.70981      1043            59           928    55     55     4      0.9      

    "Equity"       "Historical99"    0.99        accept     0.27962     0.59695      1043            12          1018    12     12     0      0.9      

    "Equity"       "EWMA95"          0.95        accept    0.040277     0.84094      1043            59           927    56     56     3      0.9      

    "Equity"       "EWMA99"          0.99        accept     0.94909     0.32995      1043            22           998    22     22     0      0.9      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = cci(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — cci test results
table

5-63



5 Functions — Alphabetical List

cci test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'CCI' — Categorical array with the categories accept and reject that indicate the

result of the cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note: For cci test results, the terms accept and reject are used for convenience,
technically a cci test does not accept a model. Rather, the test fails to reject it.

More About

Conditional Coverage Independence (CCI) Test

The cci function performs the conditional coverage independence test.

This is a likelihood ratio test proposed by Christoffersen (1998) to assess the
independence of failures on consecutive time periods. For the conditional coverage mixed
test, see the cc function.

Algorithms

To define the likelihood ratio (test statistic) of the cc test, first define the following
quantities:
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• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures

Then define the following conditional probability estimates:

• p01 = Probability of having a failure on period t, given that there was no failure on
periodt – 1

= N01 / (N00 + N01)

• p11 = Probability of having a failure on period t, given that there was a failure on
periodt – 1

= N11 / (N10 + N11)

Define also the unconditional probability estimate of observing a failure:

pUC = Probability of having a failure on period t

   = (N01 + N11) / (N00 + N01 + N10 + N11)

The likelihood ratio of the CCI test is then given by

LRatioCCI = -2*((N00+N10)*log(1 - pUC) + (N01+N11)*log(pUC)...

            - N00*log(1-p01) - N01*log(p01)...

            - N10*log(1-p11) - N11*log(p11) )

which is asymptotically distributed as a chi-square distribution with one degree of
freedom.

The p-value of the CCI test is the probability that a chi-square distribution with one
degree of freedom exceeds the likelihood ratio LRatioCCI,

PValueCC = 1 - F(LRatioCCI)

where F is the cumulative distribution of a chi-square variable with one degree of
freedom.

The result of the test is to accept if

 F(LRatioCCI) < F(TestLevel)
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and reject otherwise, where F is the cumulative distribution of a chi-square variable with
one degree of freedom.

If one or more of the quantities N00, N10, N01, or N11 are zero, the likelihood ratio is
handled differently. The likelihood ratio as defined above is composed of three likelihood
functions of the form

L = (1 - p)^n1 * p^n2

For example, in the numerator of the likelihood ratio, there is a likelihood function of the
form L with p = pUC, n1 = N00 + N10, and n2 = N01 + N11. There are two such likelihood
functions in the denominator of the likelihood ratio.

It can be shown that whenever n1 = 0 or n2 = 0, the likelihood function L can be replaced
by the constant value 1. Therefore, whenever N00, N10, N01, or N11 is zero, replace the
corresponding likelihood functions by 1 in the likelihood ratio, and the likelihood ratio is
well defined.
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• varbacktest

References

Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.
39, 1998, pp. 841–862.

See Also
bin | cc | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b
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pof
Proportion of failures test for value-at-risk (VaR) backtesting

Syntax

TestResults = pof(vbt)

TestResults = pof(vbt,Name,Value)

Description

TestResults = pof(vbt) generates the proportion of failures (POF) test for value-at-
risk (VaR) backtesting.

TestResults = pof(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate POF Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

Generate the pof test results.
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TestResults = pof(vbt,'TestLevel',0.99)

TestResults = 

    PortfolioID    VaRID    VaRLevel     POF      LRatioPOF    PValuePOF    Observations    Failures    TestLevel

    ___________    _____    ________    ______    _________    _________    ____________    ________    _________

    "Portfolio"    "VaR"    0.95        accept    0.46147      0.49694      1043            57          0.99     

Run the POF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the pof test results using the TestLevel optional input.

TestResults = pof(vbt,'TestLevel',0.90)

TestResults = 

    PortfolioID        VaRID         VaRLevel     POF      LRatioPOF    PValuePOF    Observations    Failures    TestLevel

    ___________    ______________    ________    ______    _________    _________    ____________    ________    _________
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    "Equity"       "Normal95"        0.95        accept    0.46147        0.49694    1043            57          0.9      

    "Equity"       "Normal99"        0.99        reject     3.5118       0.060933    1043            17          0.9      

    "Equity"       "Historical95"    0.95        accept    0.91023        0.34005    1043            59          0.9      

    "Equity"       "Historical99"    0.99        accept    0.22768        0.63325    1043            12          0.9      

    "Equity"       "EWMA95"          0.95        accept    0.91023        0.34005    1043            59          0.9      

    "Equity"       "EWMA99"          0.99        reject     9.8298      0.0017171    1043            22          0.9      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = pof(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — pof test results
table
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pof test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR level to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TestLevel' — Test confidence level

Note: For pof test results, the terms accept and reject are used for convenience,
technically a pof test does not accept a model. Rather, the test fails to reject it.

More About

Proportion of Failures (POF) Test

The pof function performs Kupiec's proportion of failures test.

The POF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the
proportion of failures (number of failures divided by number of observations) is consistent
with the VaR confidence level.

Algorithms

The likelihood ratio (test statistic) of the pof test is given by
LRatioPOF = -2*((N - x)*log(N*(1 - pVaR)/(N - x)) + x*log(N*pVaR/x))

where N is the number of observations, x is the number of failures, and pVaR = 1 −
VaRLevel. This test statistic is asymptotically distributed as a chi-square distribution
with one degree of freedom. By the properties of the logarithm,
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LRatioPOF = -2*N*log(1-pVaR)   if x = 0, 

and

LRatioPOF = -2*N*log(pVaR)     if x = N.

The p-value of the POF test is the probability that a chi-square distribution with one
degree of freedom exceeds the likelihood ratio LRatioPOF

PValuePOF = 1 - F(LRatioPOF),

where F is the cumulative distribution of a chi-square variable with one degree of
freedom.

The result of the test is to accept if

 F(LRatioPOF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
one degree of freedom.
• “Kupiec’s POF and TUFF Tests” on page 2-4
• varbacktest

References

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.

See Also
bin | cc | cci | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b
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runtests
Run all tests in varbacktest

Syntax

TestResults = runtests(vbt)

TestResults = runtests(vbt,Name,Value)

Description

TestResults = runtests(vbt) runs all the tests in the varbacktest object.
runtests reports only the final test result. For test details such as likelihood ratios, run
individual tests.

TestResults = runtests(vbt,Name,Value) adds an optional name-value pair
argument for TestLevel.

Examples

Run All VaR Backtests

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500
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Generate the TestResults report for all VaR backtests.

TestResults = runtests(vbt,'TestLevel',0.99)

TestResults = 

    PortfolioID    VaRID    VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    _____    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "Portfolio"    "VaR"    0.95        green    accept    accept    accept    accept    accept    reject    reject

Run All VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object and run all tests.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

    runtests(vbt)

ans = 

    PortfolioID        VaRID         VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 

    ___________    ______________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "Equity"       "Normal95"        0.95        green     accept    accept    accept    accept    accept    reject    reject

    "Equity"       "Normal99"        0.99        yellow    reject    accept    accept    accept    accept    accept    accept

    "Equity"       "Historical95"    0.95        green     accept    accept    accept    accept    accept    reject    reject

    "Equity"       "Historical99"    0.99        green     accept    accept    accept    accept    accept    accept    accept

    "Equity"       "EWMA95"          0.95        green     accept    accept    accept    accept    accept    accept    accept

    "Equity"       "EWMA99"          0.99        yellow    reject    reject    accept    reject    accept    reject    accept

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13
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Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = runtests(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with categories green, yellow, and red that

indicate the result of the traffic light (tl) test
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• 'Bin' — Categorical array with categories accept and reject that indicate the
result of the bin test

• 'POF' — Categorical array with the categories accept and reject that indicate the
result of the pof test.

• 'TUFF' — Categorical array with the categories accept and reject that indicate
the result of the tuff test

• 'CC' — Categorical array with the categories accept and reject that indicate the
result of the cc test

• 'CCI' — Categorical array with the categories accept and reject that indicate the
result of the cci test

• 'TBF' — Categorical array with the categories accept and reject that indicate the
result of the tbf test

• 'TBFI' — Categorical array with the categories accept and reject that indicate
the result of the tbfi test

Note: For the test results, the terms accept and reject are used for convenience,
technically a test does not accept a model. Rather, a test fails to reject it.

More About
• varbacktest

See Also
cc | cci | pof | summary | tbf | tbfi | tl | tuff | varbacktest

Introduced in R2016b
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summary
Report on varbacktest data

Syntax

S = summary(vbt)

Description

S = summary(vbt) returns a basic report on the given varbacktest data, including the
number of observations, the number of failures, the observed confidence level, and so on
(see S for details).

Examples

Generate a Summary Report

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

Generate the summary report.

S = summary(vbt)
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S = 

    PortfolioID    VaRID    VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio    FirstFailure    Missing

    ___________    _____    ________    _____________    ____________    ________    ________    _____    ____________    _______

    "Portfolio"    "VaR"    0.95        0.94535          1043            57          52.15       1.093    58              0      

Run a Summary Report for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object and generate a summary report.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

S = summary(vbt)

S = 

    PortfolioID        VaRID         VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing

    ___________    ______________    ________    _____________    ____________    ________    ________    ______    ____________    _______

    "Equity"       "Normal95"        0.95        0.94535          1043            57          52.15        1.093     58             0      

    "Equity"       "Normal99"        0.99         0.9837          1043            17          10.43       1.6299    173             0      

    "Equity"       "Historical95"    0.95        0.94343          1043            59          52.15       1.1314     55             0      

    "Equity"       "Historical99"    0.99        0.98849          1043            12          10.43       1.1505    173             0      

    "Equity"       "EWMA95"          0.95        0.94343          1043            59          52.15       1.1314     28             0      

    "Equity"       "EWMA99"          0.99        0.97891          1043            22          10.43       2.1093    143             0      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

5-77



5 Functions — Alphabetical List

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Output Arguments

S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as number of periods

without failures divided by number of observations
• 'Observations' — Number of observations, where missing values are removed

from the data
• 'Failures' — Number of failures, where a failure occurs whenever the loss

(negative of portfolio data) exceeds the VaR
• 'Expected' — Expected number of failures, defined as the number of observations

multiplied by one minus the VaR level
• 'Ratio' — Ratio of the number of failures to expected number of failures
• 'FirstFailure' — Number of periods until first failure
• 'Missing' — Number of periods with missing values removed from the sample

More About
• varbacktest

See Also
cc | cci | pof | runtests | tbf | tbfi | tl | tuff | varbacktest
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Introduced in R2016b
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tbf

Time between failures mixed test for value-at-risk (VaR) backtesting

Syntax

TestResults = tbf(vbt)

TestResults = tbf(vbt,Name,Value)

Description

TestResults = tbf(vbt) generates the time between failures mixed test (TBF) for
value-at-risk (VaR) backtesting.

TestResults = tbf(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TBF Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500
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Generate the tbf test results.

TestResults = tbf(vbt)

TestResults = 

    PortfolioID    VaRID    VaRLevel     TBF      LRatioTBF    PValueTBF     POF      LRatioPOF    PValuePOF     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel

    ___________    _____    ________    ______    _________    _________    ______    _________    _________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________

    "Portfolio"    "VaR"    0.95        reject    88.952       0.0055565    accept    0.46147      0.49694      reject    88.491        0.0047475     1043            57          1         3        9        25.25    85        0.95     

Run the TBF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbf test results using the TestLevel optional input.

TestResults = tbf(vbt,'TestLevel',0.90)
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TestResults = 

    PortfolioID        VaRID         VaRLevel     TBF      LRatioTBF    PValueTBF     POF      LRatioPOF    PValuePOF     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel

    ___________    ______________    ________    ______    _________    _________    ______    _________    _________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________

    "Equity"       "Normal95"        0.95        reject    88.952       0.0055565    accept    0.46147        0.49694    reject    88.491        0.0047475     1043            57          1             3     9       25.25     85       0.9      

    "Equity"       "Normal99"        0.99        reject    26.441        0.090095    reject     3.5118       0.060933    accept    22.929          0.15157     1043            17          3         21.25    48       78.25    215       0.9      

    "Equity"       "Historical95"    0.95        reject     83.63        0.023609    accept    0.91023        0.34005    reject    82.719         0.022513     1043            59          1             3    13          25     85       0.9      

    "Equity"       "Historical99"    0.99        accept    16.456         0.22539    accept    0.22768        0.63325    accept    16.228          0.18101     1043            12          3          19.5    45       152.5    200       0.9      

    "Equity"       "EWMA95"          0.95        accept    72.545         0.12844    accept    0.91023        0.34005    accept    71.635          0.12517     1043            59          1             4    13       25.75     82       0.9      

    "Equity"       "EWMA99"          0.99        reject     41.66       0.0099428    reject     9.8298      0.0017171    reject     31.83         0.080339     1043            22          2            16    40          56    143       0.9      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = tbf(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double
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Output Arguments

TestResults — tbf test results
table

tbf test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBF' — Categorical array with categories accept and reject that indicate the

result of the tbf test
• 'LRatioTBF' — Likelihood ratio of the tbf test
• 'PValueTBF' — P-value of the tbf test
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the POF test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'TBFI' — Categorical array with the categories accept and reject that indicate

the result of the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level
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Note: For tbf test results, the terms accept and reject are used for convenience,
technically a tbf test does not accept a model. Rather, the test fails to reject it.

More About

Time Between Failures (TBF) Mixed Test

The tbf function performs the time between failures mixed test, also known as the Haas
mixed Kupiec test.

'Mixed' means that it combines a frequency and an independence test. The frequency test
is Kupiec's proportion of failures (POF) test. The independence test is the time between
failures independence (TBFI) test. The TBF test is an extension of Kupiec's time until
first failure (TUFF) test, proposed by Haas (2001), to take into account not only the time
until the first failure, but the time between all failures. The tbf function combines the
pof test and the tbfi test.

Algorithms

The likelihood ratio (test statistic) of the TBF test is the sum of the likelihood ratios of
the POF and TBFI tests

 LRatioTBF = LRatioPOF + LRatioTBFI,

which is asymptotically distributed as a chi-square distribution with x+1 degrees of
freedom, wherex is the number of failures. See the Algorithms sections for pof and tbfi
for the definitions of their likelihood ratios.

The p-value of the tbf test is the probability that a chi-square distribution with x+1
degrees of freedom exceeds the likelihood ratio LRatioTBF

  PValueTBF = 1 - F(LRatioTBF)

where F is the cumulative distribution of a chi-square variable with x+1 degrees of
freedom and x is the number of failures.

The result of the test is to accept if

 F(LRatioTBF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable
with x+1 degrees of freedom and x is the number of failures. If the likelihood ratio
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(LRatioTBF) is undefined, that is, with no failures yet, the TBF result is to accept only
when both POF and TBFI tests accept.
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
• varbacktest

References

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

See Also
bin | cc | cci | pof | runtests | summary | tbfi | tl | tuff | varbacktest

Introduced in R2016b
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tbfi
Time between failures independence test for value-at-risk (VaR) backtesting

Syntax

TestResults = tbfi(vbt)

TestResults = tbfi(vbt,Name,Value)

Description

TestResults = tbfi(vbt) generates the time between failures independence (TBFI)
test for value-at-risk (VaR) backtesting.

TestResults = tbfi(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TBFI Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

Generate the tbfi test results.
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TestResults = tbfi(vbt)

TestResults = 

    PortfolioID    VaRID    VaRLevel     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel

    ___________    _____    ________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________

    "Portfolio"    "VaR"    0.95        reject    88.491        0.0047475     1043            57          1         3        9        25.25    85        0.95     

Run the TBFI Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbfi test results using the TestLevel optional input.

TestResults = tbfi(vbt,'TestLevel',0.90)

TestResults = 

    PortfolioID        VaRID         VaRLevel     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel

    ___________    ______________    ________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________
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    "Equity"       "Normal95"        0.95        reject    88.491        0.0047475     1043            57          1             3     9       25.25     85       0.9      

    "Equity"       "Normal99"        0.99        accept    22.929          0.15157     1043            17          3         21.25    48       78.25    215       0.9      

    "Equity"       "Historical95"    0.95        reject    82.719         0.022513     1043            59          1             3    13          25     85       0.9      

    "Equity"       "Historical99"    0.99        accept    16.228          0.18101     1043            12          3          19.5    45       152.5    200       0.9      

    "Equity"       "EWMA95"          0.95        accept    71.635          0.12517     1043            59          1             4    13       25.75     82       0.9      

    "Equity"       "EWMA99"          0.99        reject     31.83         0.080339     1043            22          2            16    40          56    143       0.9      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = tbfi(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — tbfi test results
table

5-88



 tbfi

tbfi test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBFI' — Categorical array with the categories accept and reject that indicate

the result of the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level

Note: For tbfi test results, the terms accept and reject are used for convenience,
technically a tbfi test does not accept a model. Rather, the test fails to reject it.

More About

Time Between Failures Independence (TBIF) Test

The tbfi function performs the time between failures independence test. This test is an
extension of Kupiec's time until first failure (TUFF) test.

TBFI was proposed by Haas (2001) to test for independence. It takes into account not
only the time until the first failure, but also the time between all failures. For the time
between failures mixed test, see the tbf function.
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Algorithms

The likelihood ratio (test statistic) of the TBFI test is the sum of TUFF likelihood ratios
for each time between failures. If x is the number of failures, and n_1 is the number of
periods until the first failure, n_2 the number of periods between the first and the second
failure, and, in general, n_i is the number of periods between failure i – 1 and failure i,
then a likelihood ratio LRatioTBFI_i for each n_i is based on the TUFF formula

LRatioTBFI_i = LRatioTUFF(ni) = ...

             -2*(log(pVaR) + (ni - 1)*log(1 - pVaR) + ...

              ni*log(ni) - (ni - 1)*log(ni - 1)).

As with the tuff test, LRatioTBFI_i = -2*log(pVaR) if n_i = 1.

The TBFI likelihood ratio LRatioTBFI is then the sum of the individual likelihood ratios
for all times between failures

 LRatioTBFI = sum_{i=1:x} LRatioTBFI_i,

which is asymptotically distributed as a chi-square distribution with x degrees of
freedom, where x is the number of failures.

The p-value of the tbfi test is the probability that a chi-square distribution with x
degrees of freedom exceeds the likelihood ratio LRatioTBFI

 PValueTBFI = 1 - F(LRatioTBFI)

where F is the cumulative distribution of a chi-square variable with x degrees of freedom
and x is the number of failures.

The result of the test is to accept if

F(LRatioTBFI) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
x degrees of freedom and x is the number of failures.

If there are no failures in the sample, the test statistic is not defined. This is handled the
same as a TUFF test with no failures. For more information, see tuff.
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
• varbacktest
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References

Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar,
Bonn, 2001.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tl | tuff | varbacktest

Introduced in R2016b
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tl
Traffic light test for value-at-risk (VaR) backtesting

Syntax

TestResults = tl(vbt)

Description

TestResults = tl(vbt) generates the traffic light (TL) test for value-at-risk (VaR)
backtesting.

Examples

Generate Traffic Light Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

Generate the tl test results.

TestResults = tl(vbt)
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TestResults = 

    PortfolioID    VaRID    VaRLevel     TL      Probability     TypeI     Increase    Observations    Failures

    ___________    _____    ________    _____    ___________    _______    ________    ____________    ________

    "Portfolio"    "VaR"    0.95        green    0.77913        0.26396    0           1043            57      

Run the TL Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tl test results.

TestResults = tl(vbt)

TestResults = 

    PortfolioID        VaRID         VaRLevel      TL      Probability      TypeI      Increase    Observations    Failures

    ___________    ______________    ________    ______    ___________    _________    ________    ____________    ________

    "Equity"       "Normal95"        0.95        green     0.77913          0.26396          0     1043            57      

    "Equity"       "Normal99"        0.99        yellow    0.97991          0.03686    0.26582     1043            17      

    "Equity"       "Historical95"    0.95        green     0.85155          0.18232          0     1043            59      
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    "Equity"       "Historical99"    0.99        green     0.74996          0.35269          0     1043            12      

    "Equity"       "EWMA95"          0.95        green     0.85155          0.18232          0     1043            59      

    "Equity"       "EWMA99"          0.99        yellow    0.99952        0.0011122    0.43511     1043            22      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Output Arguments

TestResults — tl test results
table

tl test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with the categories green, yellow, and red that

indicate the result of the traffic light tl test
• 'Probability' — Cumulative probability of observing up to the corresponding

number of failures
• 'TypeI' — Probability of observing the corresponding number of failures or more if

the model is correct
• 'Increase' — Increase in the scaling factor
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• 'Observations' — Number of observations
• 'Failures' — Number of failures

More About

Traffic Light Test

The tl function performs Basel's traffic light test, also known as three-zone test. Basel’s
methodology can be applied to any number of time periods and VaR confidence levels, as
explained in “Algorithms” on page 5-96.

The Basel Committee reports, as an example, a table of the three zones for 250 time
periods and a VaR confidence level of 0.99. The increase in scaling factor in the table
reported by Basel has some ad-hoc adjustments (rounding, etc.) not explicitly described in
the Basel document. The following table compares the increase in scaling factor reported
in the Basel document for the case of 250 periods and 0.99 % VaR confidence level, and
the increase in the factors reported by the TL test.

Failures Zone Increase Basel Increase TL

0 Green 0 0
1 Green 0 0
2 Green 0 0
3 Green 0 0
4 Green 0 0
5 Yellow 0.40 0.3982
6 Yellow 0.50 0.5295
7 Yellow 0.65 0.6520
8 Yellow 0.75 0.7680
9 Yellow 0.85 0.8791
10 Red 1 1

The tl function computes the scaling factor following the methodology described in the
Basel document (see Bibliography) and is explained in the “Algorithms” on page 5-96
section. The tl function does not apply any ad-hoc adjustments.
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Algorithms

The traffic light test is based on a binomial distribution. Suppose N is the number of
observations, p = 1 − VaRLevel is the probability of observing a failure if the model is
correct, and x is the number of failures.

The test computes the cumulative probability of observing up to x failures, reported in
the 'Probability' column,

Probability = Probability(X <= x|N,p) = F(x|N,p),

where F(x|N,p) is the cumulative distribution of a binomial variable with parameters
N and p, with p = 1 − VaRLevel. The three zones are defined based on this cumulative
probability:

• Green: F(x|N,p) <= 0.95
• Yellow: 0.95 < F(x|N,p) <= 0.9999
• Red: 0.9999 < F(x|N,p)

The probability of a Type-I error, reported in the 'TypeI' column, is TypeI =
TypeI(x|N,p) = 1 - F(X >= x|N,p).

This probability corresponds to the probability of mistakenly rejecting the model if the
model were correct. Probability and TypeI do not sum up to 1, they exceed 1 by
exactly the probability of having x failures.

The increase in scaling factor, reported in the 'Increase' column, is always 0 for the
green zone and always 1 for the red zone. For the yellow zone, it is an adjustment
based on the relative difference between the assumed VaR confidence level (VaRLevel)
and the observed confidence level (x / N), where N is the number of observations andx
is the number of failures. To find the increase under the assumption of a normal
distribution, compute the critical values zAssumed and zObserved.

The increase to the baseline scaling factor is given by

Increase = Baseline*(zAssumed/zObserved - 1),

with the restriction that the increase cannot be negative or greater than 1. The baseline
scaling factor in the Basel rules is 3.

The tl function computes the scaling factor following this methodology, which is also
described in the Basel document (see Bibliography). The tl function does not apply any
ad-hoc adjustments.
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• “Traffic Light Test” on page 2-3
• varbacktest

References

Basel Committee on Banking Supervision, Supervisory Framework for the Use of
'Backtesting' in Conjunction with the Internal Models Approach to Market Risk Capital
Requirements. January, 1996, http://www.bis.org/publ/bcbs22.htm.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tuff | varbacktest

Introduced in R2016b
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tuff
Time until first failure test for value-at-risk (VaR) backtesting

Syntax

TestResults = tuff(vbt)

TestResults = tuff(vbt,Name,Value)

Description

TestResults = tuff(vbt) generates the time until first failure (TUFF) test for value-
at-risk (VaR) backtesting.

TestResults = tuff(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TUFF Test Results

Create a varbacktest object.

load VaRBacktestData

vbt = varbacktest(EquityIndex,Normal95)

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×1 double]

      PortfolioID: "Portfolio"

            VaRID: "VaR"

         VaRLevel: 0.9500

Generate the tuff test results.
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TestResults = tuff(vbt)

TestResults = 

    PortfolioID    VaRID    VaRLevel     TUFF     LRatioTUFF    PValueTUFF    FirstFailure    Observations    TestLevel

    ___________    _____    ________    ______    __________    __________    ____________    ____________    _________

    "Portfolio"    "VaR"    0.95        accept    1.7354        0.18773       58              1043            0.95     

Run the TUFF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData

    vbt = varbacktest(EquityIndex,...

       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...

       'PortfolioID','Equity',...

       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...

       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 

  varbacktest with properties:

    PortfolioData: [1043×1 double]

          VaRData: [1043×6 double]

      PortfolioID: "Equity"

            VaRID: [1×6 string]

         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tuff test results using the TestLevel optional input.

TestResults = tuff(vbt,'TestLevel',0.90)

TestResults = 

    PortfolioID        VaRID         VaRLevel     TUFF     LRatioTUFF    PValueTUFF    FirstFailure    Observations    TestLevel

    ___________    ______________    ________    ______    __________    __________    ____________    ____________    _________
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    "Equity"       "Normal95"        0.95        accept     1.7354       0.18773        58             1043            0.9      

    "Equity"       "Normal99"        0.99        accept    0.36686       0.54472       173             1043            0.9      

    "Equity"       "Historical95"    0.95        accept     1.5348        0.2154        55             1043            0.9      

    "Equity"       "Historical99"    0.99        accept    0.36686       0.54472       173             1043            0.9      

    "Equity"       "EWMA95"          0.95        accept    0.13304        0.7153        28             1043            0.9      

    "Equity"       "EWMA99"          0.99        accept    0.14596       0.70243       143             1043            0.9      

• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13

Input Arguments

vbt — varbacktest object
object

varbacktest object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a vbt object, see varbacktest.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: TestResults = tuff(vbt,'TestLevel',0.99)

'TestLevel' — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as a numeric between 0 and 1.

Data Types: double

Output Arguments

TestResults — tuff test results
table

5-100



 tuff

tuff test results, returned as a table where the rows correspond to all combinations
of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the
following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TUFF' — Categorical array with the categories accept and reject that indicate

the result of the tuff test
• 'LRatioTUFF' — Likelihood ratio of the tuff test
• 'PValueTUFF' — P-value of the tuff test
• 'FirstFailure' — Number of periods until the first failure
• 'Observations' — Number of observations
• 'TestLevel' — Test confidence level

Note: For tuff test results, the terms accept and reject are used for convenience,
technically a tuff test does not accept a model. Rather, the test fails to reject it.

More About

Time Until First Failure (TUFF) Test

The tuff function performs Kupiec's time until first failure test.

The TUFF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the
number of periods until the first failure is consistent with the VaR confidence level.

Algorithms

The likelihood ratio (test statistic) of the tuff test is given by

 LRatioTUFF = -2*(log(pVaR) + (n - 1)*log(1 - pVaR) + ...

               n*log(n) - (n - 1)*log(n - 1)),

where n is the number of periods until the first failure and pVaR = 1 − VaRLevel. By the
properties of the logarithm (if n = 1),
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LRatioTUFF = -2*log(pVaR).  

This is asymptotically distributed as a chi-square distribution with one degree of
freedom.

The p-value of the tuff test is the probability that a chi-square distribution with one
degree of freedom exceeds the likelihood ratio LRatioTUFF

 PValueTUFF = 1 - F(LRatioTUFF),

where F is the cumulative distribution of a chi-square variable with one degree of
freedom.

The result of the test is to accept if

 F(LRatioTUFF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
1 degree of freedom.

If the sample has no failures, the test statistic is not defined. However, there are two
cases distinguished here:

• If the number of observations is large enough that no matter when the first failure
occurred it would be too late to pass the test, then the model is rejected. Technically,
this happens if the number of observations N is larger than 1/pVaR (large enough
relative to the VaR confidence level) and if the test fails when n = N+1 (the earliest
observation for the first VaR failure). In this case, the likelihood ratio is reported for n
= N+1, and the corresponding p-value.

• In all other cases, it is not possible to tell with certainty whether the result of the test
would eventually be to accept or reject the model. There are ranges of possible first
failure values that would result in accepting or rejecting the model. In these cases, the
tuff function accepts the model and reports undefined (NaN) values for the likelihood
ratio and p-value.

• “Kupiec’s POF and TUFF Tests” on page 2-4
• varbacktest

References

Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal
of Derivatives. Vol. 3, 1995, pp. 73–84.
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See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | varbacktest

Introduced in R2016b
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